
Advanced Robotics, Vol. 17, No. 2, pp. 165–178 (2003)
Ó VSP and Robotics Society of Japan 2003.
Also available online - www.vsppub.com

Full paper

Online tracking and mimicking of human movements
by a humanoid robot

ALEŠ UDE 1;2;¤ and CHRISTOPHER G. ATKESON1;3

1 ATR Human Information Science Laboratories, Department 3, 2-2-2 Hikaridai,
Keihanna Science City (Seika-cho, Soraku-gun), Kyoto 619-0288, Japan

2 Jo�ef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Jamova 39,
1000 Ljubljana, Slovenia

3 Carnegie Mellon University, Robotics Institute and HCI Institute, 5000 Forbes Avenue, Pittsburgh,
PA 15213, USA

Received 30 April 2002; accepted 31 May 2002

Abstract—This paper describes a humanoid robot system that can capture and mimic the motion of
human body parts in real-time. The underlying vision system is able to automatically detect and track
human body parts such as hands and faces in images captured by the robot’s eyes. It is based on a
probabilistic approach that can detect and track multiple blobs in a 60-Hz stereo image stream on a
standard dual processor PC. A random jerk model is employed to approximate the observed human
motion and a Kalman � lter is used to estimate its parameters (three-dimensional positions, velocities
and accelerations). This enables the system to realistically mimic the perceived motion in real-time.
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1. INTRODUCTION

Humanoid robots are similar to humans and can — unlike other robots — carry out
human-like movements. This makes programming by demonstration or imitation
learning particularly interesting for humanoid robots [1, 2]. We are interested
in creating a humanoid robot system that can imitate, practise and generalize
human behavior using the information provided by the robot’s eyes. This requires
a continuous, real-time interaction of a robot with a teacher, thus setting high
requirements for a robot perception and motor control system. Once motion
perception is seen as a continuous process that interacts with the motor control
system, the required standards of reliability become much more stringent because
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failure of one of the subsystems might cause the entire system to break down.
Here we describe how we deal with the perception of human motion and its online
conversion into robot motion. The considered issues include (i) the automatic, real-
time detection of objects of interest in images captured by cameras in motion, which
sets the groundwork for the future development of a visual attention system, (ii) a
probabilistic approach to real-time tracking of human body parts, (iii) human motion
estimation based on a random jerk model and Kalman � ltering, and (iv) generation
of humanoid robot motion using data provided by the vision system. Higher-level
issues such as generalization of the observed movements and other cognitive issues
are not the topic of this paper.

Our robot DB is a hydraulic anthropomorphic robots with a relatively complete
body. DB has 30 d.o.f.: 7 d.o.f. for each arm, 3 d.o.f. for each leg, 2 d.o.f.
for each eye, 3 d.o.f. for the head and 3 d.o.f. for the torso. Each eye of the
robot’s oculomotor system consists of two cameras: a wide-angle (100± view angle
horizontally) color camera for peripheral vision and a second narrow-view color
camera (24± view angle horizontally) providing foveal vision. This setup mimics the
foveated retinal structure of primates. The images from the wide-angle cameras are
captured and processed by a dual processor PC running the Windows NT operating
system. The extracted data is sent via a serial line to Power PC processors that
run the motor control servo and generate motor commands needed to follow the
perceived motion.

2. PERCEIVING HUMAN MOTION

The key issue when realizing a real-time motion perception system is to avoid
excessive interaction between pieces of data in both the temporal and spatial
domains. This makes probabilistic approaches especially attractive because they
allow us to govern the amount of in� uence of neighboring pixels in each domain
by making various kinds of independency assumptions. We put the problem of
body detection and tracking in a Bayesian setting, and utilize a maximum likelihood
approach to � nd and track relevant objects in the scene. Related approaches were
proposed for example in Refs. [3–5].

2.1. Tracking framework

We represent the observed environment by a number of random processes (blobs).
Each entity to be tracked is represented by one process. Let us denote the probability
that a pixel located at u having color intensity Iu was generated by the process 2k ,
k D 1; : : : ; K , by P.Iu; uj2k/. We also introduce an outlier process 20, which
models the data not captured by other processes. Assuming that every pixel stems
from one of the mutually exclusive processes 2k , k D 0; : : : ; K (closed-world
assumption), we can write the probability that color Iu was observed at location u
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using the total probability law:

P.Iu; ujQ / D
KX

kD0

!kP.Iu; uj2k/; (1)

where !k is a prior (mixture) probability to observe the process 2k ,
PK

kD0 !k D 1,
and Q D f20; 21; : : : ; 2Kg. Under these assumptions, the posterior probability
that pixel u stems from the lth process is given by Bayes’ rule:

pu;l D
!lP.Iu; uj2l/PK

kD0 !kP.Iu; uj2k/
: (2)

Ignoring the correlation of assigning neighboring pixels to processes, the overall
probability to observe image I can be approximated by:

P.I/ D P.IjQ / D
Y

u

P.Iu; ujQ /: (3)

At each time step, we would like to determine .21; : : : ; 2K ; !0; !1; : : : ; !K/ so
that likelihood (3) is maximized. Instead of maximizing criterion (3) directly, it is
often easier to minimize its negative logarithm (log-likelihood).

Before we can minimize the log-likelihood, we must decide how to model the
process distributions 2k. Our approach uses shape and color properties to evaluate
the probability that a pixel was generated by one of these processes. Assuming that
these two properties are independent of each other, we have

P.Iu; uj2l/ » p.Iuj2l/p.uj2l/: (4)

In many cases, for example when tracking body parts, the two-dimensional (2D)
shape of the tracked objects is roughly ellipsoidal and can be approximated by the
center of the object’s image xl and by the covariance matrix S l of pixels contained
in it. Thus the shape part of the probability that pixel u belongs to the lth blob can
be characterized by a 2D Gaussian distribution:

p.uj2l/ D
1

2¼
p

det.S l/
exp

³
¡

1

2
.x ¡ xl/S

¡1
l .x ¡ xl/

´
: (5)

Assuming that the object’s texture consists of a � nite number of colors, we can
model the color probabilities by a Gaussian mixture model:

p.Iuj2l/ D
KlX

kD1

!l;kp
¡
IujIl;k; Gl;k

¢
; (6)
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We experimented with the HSV and RGB color space, and mainly used the three-
dimensional (3D) RGB space for skin color detection and tracking and the 2D HSV
space (with the intensity component ignored to increase the robustness against the
variations in lighting conditions) for the detection and tracking of colored objects.
The outlier process is modeled by a � xed uniform distribution.

The color models are kept constant in the current version of the tracker. They
are learnt off-line. Thus at each tracking step we need to maximize (3) over
shape parameters f.xk; Sk/gK

kD1 and mixture probabilities f!kgK
kD0. A good iterative

approach is provided by an EM-algorithm, in which this is done by � rst calculating
the posterior probabilities pu;l (given by (2), (4), (5) and (7)) using the current
estimate for f2kg and f!gk (the expectation step) and then estimating the parameters
f.xk; 6k/g and f!kg as if pu;l were constants independent of them (the maximization
step). The maximization step consists of calculating the weighted mean and
covariances of image pixels with pu;l being used as weights and of the reestimation
of f!kg. This process is repeated until convergence.

To make the real-time operation of the tracking system possible, we implemented
it using techniques such as af� ne warping and multithreading. This implementation
is described elsewhere [6]. The current version of the tracker is capable of following
up to 10 blobs at 60 Hz on a dual-processor 933 MHz Pentium III computer. Since
we are interested in estimating 3D blob positions, we also implemented a stereo
version of the tracker. The stereo version can simultaneously track up to four blobs
at 60 Hz on such a computer. We could use two PCs to simultaneously track a larger
number of blobs in stereo.

2.2. Fast detection of objects of interest

Automatic detection of objects of interest and the subsequent initialization of the
tracker is a very necessary part of an interactive system. As we are interested in
dynamic scenes captured by the robot’s eyes, it is necessary that the automatic
initialization is at least as fast as the tracking algorithm. It is useless to come up
with a result after a long analysis of one image because the object of interest or
cameras might move to a different location before the processing is � nished. In
addition, the automatic detection algorithm should not require the setting of various
parameters for different scenes and objects because this is tedious.

The ground knowledge for our system is provided by color and shape probability
distributions. However, we use color only as ground knowledge to initialize the
tracker because it is time consuming to search for objects of an ellipsoidal shape in
an image. More advanced features were proposed in the literature, especially for the
case of face detection [7, 8], but such an approach would require us to make much
stronger assumptions about the observed objects and would thus makes the system
less practical.

Based on color, the probability that a pixel belongs to the lth blob is given by (6).
Since we do not have any information about the initial state of the blobs, we
randomly select their shapes and locations in the image. The shape parameters
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are varied in a controlled way so that 2D sizes of the generated blobs remain within
prespeci� ed limits. To achieve real-time operation, we warp a region of interest
around each of the blobs onto a window of � xed size. Color probabilities (6) are
then estimated at each pixel of the warped image. If the sum of all probabilities
within the window exceeds a certain threshold, i.e.

f.2l/ D
X

u

p.Iuj2l/ > rl; (8)

the region is deemed interesting and the tracker is started using the associated,
randomly selected blob parameters.

It is not possible to select thresholds rl in advance because they depend on
lighting conditions, the variability of color within the object and the quality of
the color models. For example, randomly searching through a video stream for
5 s (300 images) while looking for eight objects of different colors resulted in the
average and maximum probability sums that are shown in Table 1. Analyzing these
results it becomes clear that we cannot set a single threshold that would account
for all possible situations. Therefore we break the initialization process into two
phases. First we explore the video stream for a suf� cient period of time (typically
for 5 s) and sample the sums from (8). We can then set a threshold for each of the
sought objects to:

rl D .1 ¡ ¸/E.f.2l// C ¸ max
ti

f.2l/; 0 < ¸ < 1: (9)

¸ was typically set to 0.67 in our experiments.
In the second phase we restart the random search. The lth object is deemed found

once the automatically selected threshold rl is exceeded. If the tracker loses the
object, we restart the initialization process either with the � rst or with the second
phase depending on the application. Hence our system is also able to recover from
failure.

Table 1.
Average and maximum sum of color probabili-
ties for eight blobs over a period of 5 s

E.f.2l// maxti f.2l/

1.925e¡003 1.246e¡001
3.956e¡004 2.206e¡002
5.121e¡004 3.229e¡002
4.852e¡003 5.599e¡001
6.975e¡003 1.433e¡001
2.329e¡005 1.044e¡003
1.944e¡004 2.162e¡002
1.245e¡003 2.718e¡002
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2.3. 3D position estimation

We use stereo to estimate the position of tracked entities such as the hands or head.
We could take the center of blobs in both images to estimate the 3D position of
a tracked body part. However, the two centers give only a rather crude stereo
correspondence because the blobs found in the two images do not cover the same
areas on the body. This happens because of differences in the viewing direction and
because of uncertainties in the estimation of shape.

Cross-correlation is a standard method for the calculation of stereo correspon-
dences. In our case, we are not interested in generating a full depth map, but only in
estimating a 3D blob position. We take the center of the blob in the left image as a
starting point. A box template around the blob center is extracted and we attempt to
� nd the best match in the right image using zero mean normalized cross-correlation:

ZNCCl;r.u; u C d/ D
cov.Iu;l; IuCd;r/p

var.Iu;l/
p

var.IuCd;r/
; (10)

where:

cov.Iu;l; IuCd;r/ D
X

12T

¡
IuC1;l ¡ Iu;l

¢T ¡
IuCdC1;r ¡ IuCd;r

¢
=.n ¡ 1/;

var.Iu/ D
X

12T

®®IuC1 ¡ Iu

®®2
=.n ¡ 1/;

and Iu is the mean color within the box around pixel u. The maximum of correlation
(10) is sought for in a region de� ned by a slice of the image along the epipolar line
that lies within the right blob.

3. GENERATION OF HUMANOID MOTION FROM HUMAN MOTION

To enable a robot to mimic the perceived motion, we need to map the observed tra-
jectories into a robot-centered coordinate space. Besides the positional information,
it is necessary to estimate also the velocity and acceleration of the observed motion
in order to ensure that the imitated motion is as close as possible to the original
human motion. The velocities and accelerations are estimated by a Kalman � lter
described below. This is different from an earlier version of our system in which
we simultaneously estimated larger parts of an observed trajectory using splines [9].
In the previous version, a number of measurements of a motion trajectory were col-
lected � rst (typically 30 measurements for 1 s of motion) and then the trajectory was
estimated using spline approximation, which resulted in smooth mimicking move-
ments. DB could therefore start mimicking human motion only after a delay of 1 s.
In contrast to this, the current system can start tracking the observed motion im-
mediately, but the commanded motion is based only on previous measurements and
cannot take into account the future measurements.
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The translation of the observed motion into a robot-centered coordinate system
is simple. At the beginning of the mimicking task we save the initial position of a
tracked human body part and the initial position of the corresponding robot body
part, typically a hand or a face. Motion is then measured and generated with respect
to these original positions. When mimicking hand motion, for example, we move
the robot hand in such a way that the position of the robot hand with respect to the
initial robot hand position is the same as the position of the human hand with respect
to the initial human hand position.

Data provided by the vision system is given in the robot eye coordinate system.
We keep the position of the eyes with respect to each other constant so that the
stereo calibration remains valid during the execution of the mimicking task. The
current version of the system also tries to keep the position of the robot head with
respect to the robot base constant. This is achieved by exploiting the redundancy
of the humanoid robot. Thus the world coordinate system remains aligned with the
eye coordinate system and the estimated relative human motion can be used for the
generation of a humanoid robot motion. Alternatively, we could try and compensate
for the robot head motion using either our knowledge about DB’s kinematics or
some sort of online learning.

Our vision system works at 30 or 60 Hz. Hence any motion estimated by the
vision system is inevitably given at the same rate. On the other hand, DB’s servo
rate is 420 Hz. We employ a simple PD controller in Cartesian space to generate
in between points on the trajectory (positions, velocities and accelerations) and thus
account for the differences in the vision frame rate and the robot servo rate. The
resulting 420-Hz Cartesian motion is � nally transformed into the robot motion using
an inverse kinematics solver [10]. This algorithm is capable of solving the inverse
kinematics of a redundant humanoid robot at servo rate. We chose to estimate
not only velocities, but also accelerations, because specifying the Cartesian space
accelerations ensures that the robot hand moves in the proper direction provided
the estimated accelerations are correct, thus making the mimicking motion more
faithful. Additionally, the computation of accelerations gives us the possibility to
use control schemes based on inverse dynamics model.

A different solution to the human-humanoid mapping is presented in Ref. [11].
Unlike our approach, these authors assume less knowledge about the humanoid
kinematics and make several simplifying assumptions to directly convert the Carte-
sian space motion into the robot joint space motion.

3.1. Kalman � lter

In this section we present the estimation of human motion parameters based on the
3D blob positions provided by the vision system. The kinematics of any point P
belonging to a rigid body is completely characterized by v.t/, the velocity of the
point on the body coinciding with the origin O of the body-� xed coordinate system,
and !.t/, the angular velocity of the point P around the origin of the reference
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coordinate system:

vP.t/ D v.t/ C !.t/ £ ¡!
OP: (11)

A closed form solution for this general motion is not available. It is possible to solve
(11) in some special cases, but the solution would be quite different for different
situations because forces acting on the human body are very much dependent on
the current situation. Since we do not wish to make any specialized assumptions
about the dynamics of the observed motion, we selected a probabilistic approach to
approximate any kind of human motion. To enable the estimation of the body part’s
position, velocity and acceleration based on the Kalman � lter, we assume that the
linear jerk is a stationary random process Á.t/ with the following properties:

E.Á.t// D 0; E.Á.t/Á.t C s/T / D b2±.s/I; (12)

where I denotes the identity matrix, ± is the Dirac delta function and b2 is the
spectral amplitude of Á. Note that we assume that different components of the
random jerk vector are uncorrelated and equally large. In contrast to a more
common random acceleration model, the random jerk model enables us to estimate
not only positions and velocities but also accelerations. This is important because as
explained above, it is bene� cial for the mimicking system to have the accelerations
available.

At every measurement time ti we estimate the state vector x.t/ D [p.t/T ; v.t/T ;

a.t/T ]T , which consists of the object’s position, linear velocity and linear acceler-
ation. Since previously published systems usually employ the random acceleration
instead of the random jerk model, we describe the estimation procedure in detail
below. The random jerk model yields the following equation of motion

Px.t/ D

"
0 1 0
0 0 1
0 0 0

#

x.t/ C
"

0
0

Á.t/

#

: (13)

The orientation of body parts is ignored in the current version of the system, but see
Refs. [12, 13] for the treatment of a complete rigid body motion estimation problem.

The integration of (13) results in the following state propagation equation, which
is suitable for use in a Kalman � lter framework [14]:

x.tiC1/ D A.tiC1; ti/x.ti / C wi; (14)

where:

A.t; s/ D

" I .t ¡ s/ ¢ I .t ¡ s/2=2 ¢ I
0 I .t ¡ s/ ¢ I
0 0 I

#

(15)

and:

wi D
Z tiC1

ti

A.tiC1; t/[ 0 0 Ã.t/ ]T dt: (16)
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Using (12) and (16), we can estimate the process noise covariance, i.e. the
covariance of wi , as follows:

Qi D E
¡
wiwT

i

¢

D E

ÁZ tiC1

ti

A.tiC1; t/[ 0 0 Á.t/T ]T dt

Z tiC1

ti

[ 0 0 Á.s/T ]A.tiC1; s/T ds

!

D b2

"
.tiC1 ¡ ti/

5=20 ¢ I .tiC1 ¡ ti/
4=8 ¢ I .tiC1 ¡ ti/

3=6 ¢ I
.tiC1 ¡ ti/

4=8 ¢ I .tiC1 ¡ ti/
3=3 ¢ I .tiC1 ¡ ti/

2=2 ¢ I
.tiC1 ¡ ti/

3=6 ¢ I .tiC1 ¡ ti/
2=2 ¢ I .tiC1 ¡ ti/ ¢ I

#
: (17)

There is no systematical way to automatically select parameter b, the amplitude
of the process noise. In our experiments, we obtained good results by setting
b D 27 500, where the 3D measurements were given in millimeters. This ensured
a good trade-off between smoothness and goodness of � t. The guideline is that a
smaller b results in more smoothing, whereas a larger b keeps the estimated 3D
positions closer to the measurements.

The measurements are provided by the previously described stereo vision system.
They are related to the state vector via the state measurement equation:

pi D Hxi C vi; H D [ I 0 0 ]; (18)

where vi denotes the white measurement noise. It is important that we properly
estimate the covariance matrix of the measurement noise vector because, as it
is well known, the stereo triangulation errors are oriented and depend on depth.
Nearby points have a fairly compact uncertainty, whereas distant points have a more
elongated uncertainty that is roughly aligned with the viewing direction towards the
point [15]. It is common to assume that the 2D image noise is constant and to
estimate the 3D covariance matrix Ri of pi using standard covariance propagation
rules. Table 2 shows that this approach gives an accurate approximation for the true
measurement covariance. In our experiments, the 2D covariances were estimated
in advance from the data. These 2D matrices were then used to estimate the 3D
position covariances depending on the blob position in space.

Table 2.
µ

6:5e¡1 ¡2:3e¡2
¡2:3e¡2 6:7e¡1

¶ µ
6:6e¡1 ¡1:2e¡2

¡1:2e¡2 6:7e¡1

¶

" 4:4eC1 ¡1:6eC1 ¡2:4eC2
¡1:6eC1 9:4eC0 9:3eC1
¡2:4eC2 9:3eC1 1:4eC3

# " 4:3eC1 ¡1:5eC1 ¡2:3eC2
¡1:5eC1 8:5eC0 8:8eC1
¡2:3eC2 8:8eC1 1:4eC3

#

In this experiment we took 600 images of an object at rest. The two 2 £ 2 matrices in the upper
row show the average covariancesof the detected 2D blob positions that were estimated from the data.
The left 3 £ 3 matrix in the lower row shows the average covariance of the 3D blob position estimated
from the 3D data. The right 3 £ 3 matrix in the lower row shows the average covariance obtained by
transforming the 2D covariances using standard covariance propagation rules.
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Vision can directly measure only positions in space. Hence once a body part
is detected and the tracking starts, we can only acquire those coordinates in the
state vector that correspond to the blob position. The associated part of the state
covariance matrix is simply taken to be the current measurement covariance. As we
have no information about the initial velocities and accelerations, these values are
initially set to zero. The associated part of the state covariance matrix is set to a
diagonal matrix with very large elements on the diagonal, re� ecting the fact that we
have little con� dence in this initial approximation. This enables the Kalman � lter
to quickly adapt the corresponding parameters to the perceived motion.

This completes the speci� cation of all entities needed to run the Kalman � lter. We
made use of the OpenCV [16] implementation of the � lter to carry out the � ltering
process.

4. EXPERIMENTS

The methods described in the previous two sections enable us to detect a human
body part, track its motion, estimate its position, velocity and acceleration, and to
mimic the estimated motion by a humanoid robot. The result is an immediate and
realistic imitation of the perceived motion. In this section we presents some results
showing the accuracy of the presented methods.

To show that our system returns meaningful results, we � rst measured the 3D
position of a human hand which was not moving. The raw results and the � ltered
data are shown in Table 3. It is clear from these results that the Kalman � lter
succesfully reduced the noise in the vision data and that the estimated velocities
and accelerations were closed to the true value (0). As expected, the noise and
consequently the smoothing effects are larger in the z direction which is aligned
with the optical axis of the left eye (the direction of depth).

In the second experiment the human performer tried to alternatively move his hand
as much as possible along the three coordinate axes of the robot’s base coordinate
system. Figure 1 shows the trajectory estimated by the proposed Kalman � lter
technique. Motion along the coordinate axes is clearly re� ected not only in the
position trajectories, but also in the velocities and accelerations. Again, the noise in
the direction of the optical axis is larger than the noise in other directions. It is also
not surprising that the noise in velocities and accelerations is larger than the noise
in the measured positions. These results were acquired during the execution of the
mimicking task.

Table 3.
Accuracy of the � lter (mm) when estimating the motion of an object that does not move (mean (SD))

Raw position Position Velocity Acceleration
¡88:9 .2:96/ ¡88:7 .1:82/ ¡0:27 .25:02/ ¡2:34 .200:25/

221:1 .7:92/ 219:9 .3:93/ 0:78 .28:30/ 2:37 .164:59/

1024:6 .35:00/ 1019:2 .16:80/ 3:71 .91:78/ 12:88 .263:88/
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Figure 2 shows that DB can quite accurately follow the commanded trajectory.
The executed motion is close to the desired motion, although slightly less smooth.
The main problem when mimicking the performed human motion is that DB’s joint
limits are much stricter than human joint limits. DB’s motion becomes more jerky
when DB approaches his joint limits. Another inaccuracy is caused by the very
wide lenses used for DB’s eyes. This makes distortion effects signi� cant once we
approach the edge of an image. Although we developed a method that can correct
the radial distortion effects, these effects are still signi� cant enough to in� uence the
quality of the measurements even after the distortion correction. This can also cause
a rather jerky motion.

In general, it is easier to mimic movements that do not involve motion in the
direction of depth because the estimation of motion parameters in this direction is
much more noisy (see Fig. 1 and Table 3). If the depth does not change, the Kalman
� lter can easily eliminate the noise in this direction. On the other hand, it is dif� cult
for the � lter to distinguish noise from real motion if the depth changes rapidly. The
resulting motion is therefore jerkier in this case. To some extent this problem can
be alleviated by tuning the spectral amplitude b2 from the random jerk model (12),
but there is no automatic method to accomplish this task.

Finally, in Figs 3 and 4 we present a few images showing DB successfully fol-
lowing human motion. We carried out various experiments, among them mim-

Figure 1. Positions, velocities and accelerations estimated by the Kalman � lter.
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Figure 2. The estimated Cartesian space motion trajectory (solid) and the trajectory followed by the
robot (dash dot).

Figure 3. DB mimicking downwards hand motion.

Figure 4. DB tracking left to right head motion with his right hand.
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icking of human hand motion and tracking of human head motion with DB’s
hand.

5. CONCLUSIONS

We have presented an integrated vision and motor control system that enables a
humanoid robot to mimic human motion in real-time. The vision system was
entirely implemented on a standard PC and can thus be easily replicated. The
developed system represents an important building block for higher-level imitation
learning systems that can use visual information provided by the robot’s eyes and
general vision.

In addition to studying higher level imitation learning and interaction issues, we
still need to deal with a number of immediate problems that affect the operation
of the current system. The most urgent problem is the compensation of the head
motion during the execution of mimicking tasks. We intend to use learning to
compensate for image motion generated by the robot.

Another important issue is the choice of a body con� guration. For example,
a humanoid arm is redundant with respect to the mimicking of hand motion and
there are an in� nite number of con� gurations that result in the same hand motion.
In the experiment in Fig. 3, the robot arm con� guration was different from the
demonstrator’s arm con� guration when the mimicking began and this difference
was retained throughout the mimicking session. Ideally, the visual system should
recognize the initial arm con� guration, but this is a formidable task for visual
processing, especially if it is to be performed in real-time. An off-line approach
is described in Ref. [17], but we are currently working on a real-time solution.
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