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Abstract The paper presents a two-layered system for (1)
learning and encoding a periodic signal without any knowl-
edge on its frequency and waveform, and (2) modulating the
learned periodic trajectory in response to external events.
The system is used to learn periodic tasks on a humanoid
HOAP-2 robot. The first layer of the system is a dynami-
cal system responsible for extracting the fundamental fre-
quency of the input signal, based on adaptive frequency os-
cillators. The second layer is a dynamical system responsi-
ble for learning of the waveform based on a built-in learning
algorithm. By combining the two dynamical systems into
one system we can rapidly teach new trajectories to robots
without any knowledge of the frequency of the demonstra-
tion signal. The system extracts and learns only one period
of the demonstration signal. Furthermore, the trajectories are
robust to perturbations and can be modulated to cope with
a dynamic environment. The system is computationally in-
expensive, works on-line for any periodic signal, requires
no additional signal processing to determine the frequency
of the input signal and can be applied in parallel to mul-
tiple dimensions. Additionally, it can adapt to changes in
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1 Introduction

One of the central issues in robotics and animal motor con-
trol is the problem of trajectory generation and modulation.
Since in many cases trajectories have to be modified on-line
when goals are changed, obstacles are encountered, or when
external perturbations occur, the notions of trajectory gener-
ation and trajectory modulation are tightly coupled.

In this article we address some of the issues related to tra-
jectory generation and modulation, with an emphasis on the
supervised learning of periodic trajectories, including the
learning of the frequency. Other addressed issues include
robust movement execution despite external perturbations,
and modulation of the trajectory to reuse it under modified
conditions.

For the learning of a periodic trajectory without speci-
fying the period and without using traditional off-line signal
processing methods, our approach suggests splitting the task
into two sub-tasks: (1) frequency extraction, and (2) the su-
pervised learning of the waveform. This is done using two
ingredients: nonlinear oscillators for the frequency adapta-
tion, and nonparametric1 regression techniques for shaping

1The term “nonparametric” is to indicate that the data to be modelled
stem from very large families of distributions which cannot be indexed
by a finite dimensional parameter vector in a natural way. It does not
mean that there are no parameters.

mailto:andrej.gams@ijs.si
mailto:auke.ijspeert@epfl.ch


Auton Robot

the attractor landscapes according to the demonstrated tra-
jectories. The systems are designed such that after having
learned the trajectory, simple changes of parameters allow
modulations in terms of, for instance, frequency, amplitude
and oscillation offset, while keeping the general features of
the original trajectory.

The system we propose in this paper is based on the mo-
tion imitation approach described in Ijspeert et al. (2002a,
2002b, 2002c), Schaal et al. (2007). That approach uses two
dynamical systems like the system presented here, but with
a simple nonlinear oscillator to generate the phase and the
amplitude of the periodic movements. A major drawback of
that approach is that it requires the frequency of the demon-
stration signal to be explicitly specified. This means that
the frequency has to be either known or extracted from the
recorded signal by signal processing methods, e.g. Fourier
analysis. The main difference of our new approach is that
we use an adaptive frequency oscillator (Buchli and Ijspeert
2004; Righetti et al. 2006), which has the process of fre-
quency extraction and adaptation totally embedded into its
dynamics. The frequency does not need to be known or
extracted, nor do we need to perform any transformations
(Righetti and Ijspeert 2006). This simplifies the process of
teaching a new task/trajectory to the robot. To our knowl-
edge, this is the first system of this kind. Additionally, the
system can work incrementally in on-line settings. The sys-
tem also generalizes an approach that proposes the use of
feedback instead of an oscillatory dynamical system (Gams
et al. 2007), but thus imposes great restrictions on the gen-
erality and the possibility of modulation.

Our approach is loosely inspired from dynamical systems
observed in vertebrate central nervous systems, in particu-
lar central pattern generators (Ijspeert 2008). Additionally,
our work fits in the view that biological movements are
constructed out of the combination of “motor primitives”
(Schaal 1999; Mataric 1998), and the system we develop
could be used as blocks or motor primitives for generating
more complex trajectories.

In the next sections, we first provide a review of differ-
ent approaches for trajectory generation and modulation. We
define five desirable properties that a trajectory generation
system should posses, which helps to structure the review.
We also give a short overview of different biological con-
cepts related to our work (Sect. 2). We then present the struc-
ture of the system and the learning algorithm used (Sect. 3).
Properties and possibilities of modulation are given next
(Sect. 4), followed by experimental evaluation of the sys-
tem (Sect. 5). We conclude the paper by discussing the re-
sults and presenting some of possible improvements of the
system (Sect. 6).

2 Different approaches to learning trajectories

There are numerous studies on the learning and modula-
tion of trajectories in a variety of fields including robot-
ics, machine learning, artificial neural networks, computa-
tional neuroscience, machine vision and graphics animation.
In this paper, we are mainly interested in human periodic
trajectory demonstration, where trajectory is a variable that
evolves over time. The variable can be multi-dimensional,
and can encode different quantities such as a position in
Cartesian space, joint angle, or a torque.
Desirable characteristics

A system for encoding movement trajectories should ide-
ally possess at least five desirable characteristics:

1. The ease of learning and representing a desired trajectory,
where learning is ideally one-shot and computationally
inexpensive.

2. Compactness of representation: Multidimensional tr-
ajectories can quickly fill large data arrays; therefore the
representation should compress the data into a compact
form.

3. Ability to deal with noise, perturbations and changes in
a dynamic environment. When used in a control task,
the trajectory generation system should be able to make
on-line modifications to the trajectory, e.g., for obstacle
avoidance.

4. Ease of re-use for related tasks and modification for new
tasks. Ideally, the system should be able to generate a
family of similar trajectories with modifying only few
parameters, instead of having to learn each trajectory in-
dividually.

5. Categorization for trajectory recognition. Representa-
tions for encoding a trajectory should serve for classi-
fication of trajectories, e.g. to measure their similarities
and dissimilarities.

The possibility of sequencing trajectories, as one of the pos-
sible characteristics, was intentionally omitted from the list,
as it requires a higher level of task-oriented control system,
which is not the topic of this paper.

As we will see, very few approaches fulfill these different
desirable characteristics.

Representation. Choosing the representation or encoding
of the trajectory is a central issue. Among the simplest rep-
resentations is simple storing of large time-indexed vectors
(Kawamura and Fukao 1994). Alternatively, more compact
representations can be constructed by using interpolation
algorithms such as spline fitting and only storing key via-
points (Schaal 1999). Other approaches include function-
approximators, such as neural networks (Maass et al. 2002;
Zegers and Sundareshan 2003) and recurrent neural net-
works (RNN) (Paine and Tani 2004; Tani and Ito 2003).
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Lately, probabilistic models, such as Hidden Markov Mod-
els (HMM) (Inamura et al. 2004), Bayesian Networks (Gri-
mes et al. 2006), or Gaussian Mixture Models (GMM) (Cali-
non et al. 2007), have also been used. Probabilistic models
can also be used in combination with knowledge-based sys-
tems (Hersch et al. 2008). Rhythmic motions require par-
ticular types of encoding to encapsulate their cyclic na-
ture. Different approaches include cyclically reading vec-
tors, cyclic vector fields (Li and Horowitz 1999; Okada et
al. 2002), and encoding trajectories into the limit cycle be-
havior of nonlinear oscillators (Nishii 1998; Ijspeert et al.
2002b).

Some representations use hierarchical structures in which
a trajectory is encoded as a superposition and/or sequence of
simpler trajectories (Mussa-Ivaldi 1997; Tsuji et al. 2002;
Rohrer and Hogan 2003; Fod et al. 2002; Drumwright et
al. 2004). Such approaches are often inspired from the con-
cept of motor primitives in vertebrate motor control (Schaal
1999; Mataric 1998), and are interesting ways of making the
encoding of multiple trajectories more compact.

Learning. The learning algorithms are closely related to
the chosen type of representation. When time-indexed vec-
tors (Kawamura and Fukao 1994) are used, no learning al-
gorithm is needed. Representations based on spline-fitting
typically use well-established fitting algorithms (Miyamoto
et al. 1996). The via-points used by these algorithms can be
either assigned automatically or by the user.

When the chosen representation is linear in the parame-
ters, regression can be sufficient (Maass et al. 2002; Ijspeert
et al. 2002b), and has the advantage of fast, one-shot learn-
ing. Gradient-descent algorithms are extensively used, par-
ticularly for neural networks, such as variants of the back-
propagation algorithm (Simard and LeCun 1991). Alterna-
tively, evolutionary algorithms can be used for instantiating
the network’s parameters given a cost function describing
the desired trajectories (Ijspeert et al. 1999). Both gradient-
descent and evolutionary algorithms tend to be slow.

Other learning algorithms also include reinforcement
learning, as in, for example, Guenter et al. (2007).

Trajectory generation and modulation. Many researchers
are not only interested in correctly reproducing a learned tra-
jectory, but also in adapting a learned trajectory to new con-
ditions. Simple modulations include repeating trajectories at
different speeds and/or different amplitudes. More complex
modulations might be time or space dependent such as those
needed to reproduce a trajectory while avoiding an obsta-
cle along the original path. Other modulations might be re-
quired when the robot is subjected to external forces. One
should notice that some representations are more suitable
than others for modulation and dealing with perturbations.
Reproducing trajectories at different speeds and/or different

amplitudes can be obtained using simple scaling laws with
time-indexed vector representations (Kawamura and Fukao
1994). Representations using spline fitting and via-points
can also be modulated using dynamic optimization methods
(Miyamoto et al. 1996). Such approaches, however, present
the disadvantage that the control policy requires time as an
explicit variable, which makes them highly sensitive toward
unforeseen perturbations in the environment that would dis-
rupt the normal time flow. Neural networks can be trained
to generalize and produce a range of different motions from
a fixed set of training examples, and this without requiring
explicit time indexing (Zegers and Sundareshan 2003).

Specific features of human-like movements cannot be ac-
counted for by simple scaling. These features can be encap-
sulated by optimization criteria, such as minimum torque-
change (Kawato 1996) or minimum variance of end po-
sition (Harris and Wolpert 1998). Alternatively, dynamical
systems can be designed to replicate human movement fea-
tures, and to generate arbitrary movements by the modula-
tion of attractor points (Bullock and Grossberg 1989). Ad-
hoc kinematic planning models can also replicate some fea-
tures of human movement generalization. Different interpo-
lation and extrapolation techniques have also been devel-
oped for motion synthesis in the field of animation and hu-
manoid robotics. Methods synthesizing a trajectory from a
given set of learned motions are another option (Ude et al.
2007 or Mezger and Giese 2005).

Reproducing and modulating trajectories is also possi-
ble using a system of coupled nonlinear oscillators (Righetti
and Ijspeert 2006), where adaptive frequency oscillators are
used to learn separate frequency components of the demon-
stration trajectory, and added to recreate the signal. The
drawback of this approach is that the system can only be
modulated in speed and amplitude. Also the return to the
limit cycle regime after a perturbation is relatively slow be-
cause of the time needed to converge to the right phase lags
between the multiple oscillators used to encode a specific
one-dimensional signal. For complex signals and for scaling
into multi-dimensionality, the number of oscillators needed
grows quickly, leading to a complex system structure.

Dealing with perturbations. Dealing with perturbations,
e.g. when performing a trajectory with a robot in the pres-
ence of obstacles and/or external forces, is a complex and to
a great extent task-dependent problem. For instance, hitting
an obstacle with a limb will require different trajectory mod-
ulation during a walking sequence compared to a reaching
movement. In some situations, trajectories might not need to
be modulated if the perturbations are small and/or short. If
we assume that the robot is provided with an on-line track-
ing controller (e.g. a PID feedback controller, potentially ex-
tended with a feed-forward controller), the feedback control
loop of the tracking controller could be sufficient to rapidly
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overcome the perturbation by adjusting torques and dimin-
ishing the error between desired and actual positions. Large
perturbations (e.g. due to contacts with an obstacle) how-
ever require on-line modulations of the desired trajectories
in order to prevent risks of damage or of being permanently
stuck. For example, a criterion can be used to modulate the
learned trajectories (see for example Hersch et al. 2008).
Another approach in robotics relies on encoding desired tra-
jectories in terms of vector fields, e.g. velocity fields (Li and
Horowitz 1999), or potential fields (Khatib 1986). The vec-
tor fields essentially represent an attractor landscape, with
the desired trajectory as attractor trajectory. This offers the
opportunity to introduce repulsive forces for avoiding obsta-
cles. This is also one of the features of our system.

In view of the presented review, our system is based on
encoding trajectories as a limit cycle produced by a two lay-
ered dynamical system, with one layer for frequency adap-
tation and for producing the phase of the signal, and the sec-
ond layer for learning the waveform as a non-linear filter.
As will be shown in the next sections, the complete system
is low-dimensional, learns rapidly, allows modulation, and
is robust against perturbations.

3 System for learning the frequency and waveform of
an unknown signal

In this section we first present the structure of the pro-
posed system, followed by the detailed explanation of the
two building blocks: (1) The Canonical Dynamical System
for the frequency adaptation, and (2) the Output Dynamical
System for the learning of the waveform.

3.1 System structure

Figure 1 shows the structure of the proposed system for the
learning of the frequency and the waveform of the input sig-
nal. The input into the system ydemo(t) is an arbitrary peri-
odic signal of one or more degrees of freedom (DOF). For
the clarity of the presentation, we assume a single DOF for
the input signal (multiple dimensions will be discussed in
Sect. 4.3).

The task of frequency and waveform learning is split
into two separate tasks, each performed by a separate dy-
namical system. The frequency adaptation is performed by
the Canonical Dynamical System, which consists of several
adaptive frequency oscillators in a feedback structure. Its
purpose is to extract the fundamental frequency Ω of the
input signal, and to provide the phase Φ of the oscillator at
this frequency.

These quantities are fed into the Output Dynamical Sys-
tem, whose goal is to adapt the shape of the limit cycle of
the Canonical Dynamical System, and to learn the wave-
form of the input signal. The resulting output signal of the

Fig. 1 Proposed structure of the system. The two-layer system is
composed of the Canonical Dynamical System as the first layer for
the frequency adaptation, and the Output Dynamical System for the
learning as the second layer. The input signal ydemo(t) is an arbitrary
Q-dimensional periodic signal. The Canonical Dynamical System out-
puts the fundamental frequency Ω and phase of the oscillator at that
frequency, Φ , for each of the Q DOF, and the Output Dynamical Sys-
tem learns the waveform

Output Dynamical System is not explicitly encoded but gen-
erated during the time evolution of the Canonical Dynami-
cal System, by using a set of weights learned by Incremental
Locally Weighted Regression (ILWR) (Schaal and Atkeson
1998).

The Output Dynamical System encapsulates several in-
teresting properties, such as the reproduction of the trajec-
tories, their modulation, and dealing with perturbations in a
single set of differential equations.

Both frequency adaptation and waveform learning work
in parallel, thus accelerating the process. The output of the
combined system can be, for example, joint coordinates of
the robot, position in task space, joint torques, etc., depend-
ing on what the input signal represents. Another output of
the system is the weight vector wi , which we can use to re-
produce the learned trajectories at a desired frequency (see
Sect. 4), or to classify the trajectories (see Sect. 5.5).

3.2 Canonical dynamical system

The task of the Canonical Dynamical System is two-fold.
Firstly, it has to extract the fundamental frequency Ω of the
input signal, and secondly, it has to exhibit stable limit cycle
behavior in order to provide a phase signal Φ , that is used to
anchor the waveform of the output signal.

As the basis of our canonical dynamical system we use a
set of phase oscillators, see e.g. Buchli et al. (2006), to which
we apply the adaptive frequency learning rule as introduced
in Buchli and Ijspeert (2004) and Righetti et al. (2006), and
combine it with a feedback structure (Righetti and Ijspeert
2006) shown in Fig. 2. The basic idea of the structure is
that each of the oscillators will adapt its frequency to one
of the frequency components of the input signal, essentially
“populating” the frequency spectrum.
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Fig. 2 Feedback structure of a network of adaptive frequency phase
oscillators, that form the Canonical Dynamical System. All oscillators
receive the same input and have to be at different starting frequencies
to converge to different final frequencies. Refer also to text and (1–5)

We use several oscillators, but are interested only in the
fundamental or lowest non-zero frequency of the input sig-
nal, denoted by Ω , and the phase of the oscillator at this
frequency, denoted by Φ . Therefore the feedback structure
is followed by a small logical block, which chooses the cor-
rect, lowest non-zero, frequency. Determining Ω and Φ is
important because with them we can formulate a supervised
learning problem in the second stage—the Output Dynami-
cal System, and learn the waveform of the full period of the
input signal.

The feedback structure of M adaptive frequency phase
oscillators is governed by the following equations:

φ̇i = ωi − Ke(t) sin(φi), (1)

ω̇i = −Ke(t) sin(φi), (2)

e(t) = ydemo(t) − ŷ(t), (3)

ŷ(t) =
M∑

i=1

αi cos(φi), (4)

α̇i = η cos(φi)e(t), (5)

where K is the coupling strength, φi is the phase of oscil-
lator i, e(t) is the input into the oscillators, ydemo(t) is the
input signal, ŷ(t) is the weighted sum of the oscillators’ out-
puts, M is the number of oscillators, αi is the amplitude as-
sociated to the i-th oscillator, and η is a learning constant.

Equations (1) and (2) present the core of the Canonical
Dynamical System—the adaptive frequency phase oscilla-
tor. Several (M) such oscillators are used in a feedback loop
to extract separate frequency components. Equations (3) and
(4) specify the feedback loop, which needs also amplitude
adaptation for each of the frequency components (5).

As we can see in Fig. 2, each of the oscillators of the
structure receives the same input signal, which is the dif-
ference between the signal to be learned and the signal al-

ready learned by the feedback loop, as in (3). Since a neg-
ative feedback loop is used, this difference approaches zero
as the weighted sum of separate frequency components, (4),
approaches the learned signal, and therefore the frequen-
cies of the oscillators stabilize. Equation (5) ensures am-
plitude adaptation and thus the stabilization of the learned
frequency. Such a feedback structure performs a kind of dy-
namic Fourier analysis. It can learn several frequency com-
ponents of the input signal (Righetti and Ijspeert 2006) and
enables the frequency of a given oscillator to converge as
t → ∞, because once the frequency of a separate oscil-
lator is set, it is deducted from the demonstration signal
ydemo(t), and disappears from e(t) (due to the negative feed-
back loop). Other oscillators can thus adapt to other remain-
ing frequency components.

The populating of the frequency spectrum is therefore
done without any signal processing, as the whole process
of frequency extraction and adaptation is totally embedded
into the dynamics of the adaptive frequency oscillators.

Frequency adaptation results for a time-varying signal
are illustrated in Fig. 3. The top plot shows the signal and
the bottom plot shows the frequency adaptation to the sig-
nal. The signal itself is of three parts, a non-stationary sig-
nal (presented by a chirp signal), followed by a step change
in the frequency of the signal, and in the end a stationary
signal. We can see that the output frequency stabilizes very
quickly at the (changing) target frequency. In general the
speed of convergence depends on the coupling strength K

(see Fig. 5) (Righetti and Ijspeert 2006). Besides the use for
non-stationary signals, such as chirp signals, coping with the
change in frequency of the input signal proves especially
useful when adapting to the frequency of hand-generated
signals, which are never stationary.

In this particular example, a single adaptive frequency
oscillator in a feedback loop was enough, because the input
signal was purely sinusoidal. In the next sections we will use
a common fixed number of oscillators M for all the signals.

Figure 4 shows the results of the Canonical Dynamical
System adapting to an input signal with five frequency com-
ponents; five oscillators were used. The oscillators tend to
adapt to the components they are closest to, as they fall into
their basins of attraction. These are different in size, depend-
ing on the power of separate components and the coupling
strength K . To accurately learn the frequencies we have to
include enough oscillators in a feedback loop to “eliminate”
all the signals with (3). If we use fewer oscillators than there
are frequency components of the signal, their frequency will
oscillate with an amplitude of oscillations dependent on K

(Righetti and Ijspeert 2006). We can still extract the exact
frequency by using a mean value of the chosen frequency.

The number of adaptive frequency oscillators in a feed-
back loop is therefore a matter of design. There should be
enough oscillators to avoid missing the fundamental fre-
quency and to limit the variation of frequencies described
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Fig. 3 Top: Non-stationary
input signal: chirp signal
ydemo = sin(ωt t) with
ωt = (20 − 0.625t) rad/s for
t < 16 s, and ωt = 10 rad/s for
t > 16 s. Step changes follow
with ωt = 22 rad/s and 17 rad/s,
occurring at t = 20 s and
t = 30 s. Input signal stabilizes
at 17 rad/s. Bottom: frequency
adaptation of a feedback
structure with one adaptive
frequency oscillator, starting at
ω0 = 2π rad/s. ω is the solid
line and ωt is the dash-dot line.
As we can see, the adaptation is
successful for non-stationary
signals, step changes and
stationary signals

Fig. 4 Frequency adaptation of
the feedback structure with five
adaptive phase oscillators to the
input signal
ydemo(t) = 0.5 + 0.8sin(2πt)

+2sin(4πt)+sin(6πt)+sin(12πt),
with the initial conditions of the
adaptive frequency oscillators at
ω0 = [3.14,6.59,8.17,31.41,

43.98] rad/s. The canonical
system successfully adapts to all
five frequency components—the
offset (or 0 rad/s), 2π rad/s,
4π rad/s, 6π rad/s and 12π rad/s

above when the input signal has many frequencies compo-
nents. A high number of oscillators can easily be used, as
this does not affect the speed of convergence. Beside the
almost negligible computational costs, using too many os-
cillators does not affect the solution. A practical problem
that arises is that the oscillators’ frequencies might come
too close together, and then lock onto the same frequency
component. To solve this we separate their initial frequen-
cies ω0 in a manner that suggests that (preferably only) one
oscillator will go for the offset, one will go for the highest
frequency, and the others will “stay between” (see Fig. 4).

With a high number of oscillators, many of them want
to lock to the offset (0 Hz). With the target frequency un-
der 1 rad/s the oscillations of the estimated frequency tend
to be higher, which results in longer adaptation times. This

makes choosing the fundamental frequency without intro-
ducing complex decision-making logic difficult. We decided
on using M = 5 oscillators (unless specified otherwise),
keeping the number of oscillators low and allowing us to
learn frequencies of five frequency components, one being
the offset of the signal. The problem of choosing the correct
frequency during normal usage of the system is thus kept at
a minimum complexity level.

Other than using logic to choose the lowest non-zero fre-
quency (absolute), we can also solve the problem of having
frequency components in a ratio that cannot be described
with an integer number, such as 4:3. In this case the funda-
mental frequency Ω is 1, which is the lowest common de-
nominator of 3 and 4 (this will be discussed in more detail
in Sect. 4.3).
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Fig. 5 Adaptation of a single
adaptive frequency oscillator
from the initial frequency
ω0 = 20 rad/s to the target
frequency ωt = 7 rad/s with the
changing of the coupling
strength K from K = 3 (highest
or most right plot) to K = 20
(lowest or most left plot) with a
step of 2 (final step is 1)

Besides learning, we can also use the system to repeat
already learned signals. It this case, we cut feedback to the
adaptive frequency oscillators by setting e(t) = 0. This way
the oscillators continue to oscillate at the frequency to which
they adapted. We are only interested in the fundamental fre-
quency, determined by

Φ̇ = Ω, (6)

Ω̇ = 0, (7)

which is derived from (1 and 2). This is also the equation of
a normal phase oscillator.

Parameters of the Canonical Dynamical System
We want the system to adapt to the frequency of the in-
put signal as fast as possible, or at least very fast. The
speed of convergence depends on the parameter K in (1
and 2), see (Righetti et al. 2006) for details. Figure 5
presents the results for the coupling strength increasing from
3 to 20.

Another issue that has to be taken into consideration is
the ratio between the coupling strength K and the learn-
ing constant η, which currently requires manual tuning.
Throughout the paper we use K = 20 and η = 1, unless
specified otherwise.

3.3 Output dynamical system

The output dynamical system is used to learn the waveform
of the input signal. Again the explanation is for a 1 DOF
signal. For multiple DOF, the algorithm works in parallel
for all the degrees of freedom.

The following dynamics specify the attractor landscape
of a trajectory y towards the anchor point g, with the Canon-
ical Dynamical System providing the phase Φ to the func-
tion Ψi of the control policy:

ż = Ω

(
αz (βz (g − y) − z) +

∑N
i=1 Ψiwir
∑N

i=1 Ψi

)
, (8)

ẏ = Ωz, (9)

Ψi = exp (h (cos(Φ − ci) − 1)). (10)

Here Ω is the frequency given by Canonical Dynamical Sys-
tem, (2), αZ and βz are positive constants, set to αz = 8
and βz = 2 for all the results; the ratio 4:1 ensures criti-
cal damping so that the system monotonically varies to the
trajectory oscillating around g—an anchor point for the os-
cillatory trajectory. N is the number of Gaussian-like pe-
riodic kernel functions Ψi , which are given by (10). wi is
the learned weight parameter (below) and r is the ampli-
tude control parameter, maintaining the amplitude of the
demonstration signal with r = 1. The system given by (8)
without the nonlinear term is a second-order linear system
with a unique globally stable point attractor (Ijspeert et al.
2002b). But because of the periodic nonlinear term, this sys-
tem produces stable periodic trajectories whose frequency is
Ω and whose waveform is determined by the weight para-
meters wi .

In (10), which determines the Gaussian-like kernel func-
tions Ψi , h determines their width, which is set to h = 2.5N

for all the results presented in the paper unless stated oth-
erwise, and ci are equally spaced between 0 and 2π in N

steps.
As the input into the learning algorithm we use triplets of

position, velocity and acceleration ydemo(t), ẏdemo(t), and
ÿdemo(t) with demo marking the input or demonstration tra-
jectory we are trying to learn. With this (8) can be rewritten
as

1

Ω
ż − αz (βz (g − y) − z) =

∑N
i=1 Ψiwir
∑N

i=1 Ψi

(11)

and formulated as a supervised learning problem with on the
right hand side a set of local models wir that are weighted
by the kernel functions Ψi , and on the left hand side the tar-
get function ftarg given by ftarg = 1

Ω
2 ÿdemo − αz(βz(g −

ydemo) − 1
Ω

ẏdemo), which is obtained by matching y to

ydemo, z to ẏdemo

Ω
, and ż to ÿdemo

Ω
.



Auton Robot

Fig. 6 The result of Output
Dynamical System with a
constant frequency input and
with continuous learning of the
weights. In all the plots the
input signal is the dash-dot line
while the learned signal is the
solid line. In the middle-right
plot we can see the evolution of
the kernel functions. The kernel
functions are a function of Φ

and do not necessarily change
uniformly (see also Fig. 13). In
the bottom right plot the phase
of the oscillator is shown. The
amplitude is here r = 1, as
shown bottom-left

Locally weighted regression corresponds to finding, for
each kernel function Ψi , the weight vector wi , which mini-
mizes the quadratic error criterion2

Ji =
P∑

t=1

Ψi(t)
(
ftarg(t) − wir(t)

)2
(12)

where t is an index corresponding to discrete time steps (of
the integration). The regression can be performed as a batch
regression, or alternatively, we can perform the minimiza-
tion of the Ji cost function incrementally, while the target
data points ftarg(t) arrive. As we want continuous learning
of the demonstration signal, we use the latter. Incremental
regression is done with the use of recursive least squares
with a forgetting factor of λ, to determine the parameters (or
weights) wi . Given the target data ftarg(t) and r(t), wi is
updated by

wi(t + 1) = wi(t) + ΨiPi(t + 1)r(t)er (t), (13)

Pi(t + 1) = 1

λ

(
Pi(t) − Pi(t)

2r(t)2

λ
Ψi

+ Pi(t)r(t)2

)
, (14)

2LWR is derived from a piecewise linear function approximation ap-
proach (Schaal and Atkeson 1998), which decouples a nonlinear least-
squares learning problem into several locally linear learning problems,
each characterized by the local cost function Ji . These local problems
can be solved with standard weighted least squares approaches.

er(t) = ftarg(t) − wi(t)r(t). (15)

P , in general, is the inverse covariance matrix (Ljung and
Söderström 1986). The recursion is started with wi = 0 and
Pi = 1. Batch and incremental learning regressions provide
identical weights wi for the same training sets when the
forgetting factor λ is set to one. Differences appear when
the forgetting factor is less than one, in which case the in-
cremental regression gives more weight to recent data (i.e.
tends to forget older ones). The error of weight learning er

(15) is not “related” to e when extracting frequency compo-
nents (3). This allows for complete separation of frequency
adaptation and waveform learning.

Figure 6 shows the time evolution of the Output Dynami-
cal System anchored to a Canonical Dynamical System with
the frequency set at Ω = 2π rad/s, and the weight parame-
ters wi adjusted to fit the trajectory ydemo(t) = sin(2πt) +
cos(4πt) + 0.4sin(6πt). As we can see in the top-left plot,
the input signal and the reconstructed signal match closely.
The matching between the reconstructed signal and the in-
put signal can be improved by increasing the number of
Gaussian-like functions, as is explained in the next para-
graphs.

Parameters of the Output Dynamical System
When tuning the parameters of the Output Dynamical Sys-
tem, we have to determine the number of Gaussian-like Ker-
nel functions N , and specially the forgetting factor λ.
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Fig. 7 The error of learning
decreases with the increase of
the number of Gaussian-like
kernel functions. The error,
which is quite small, is mainly
due to a very slight (one or two
sample times) delay of the
learned signal

Table 1 Equations and
parameters of the system Canonical Dynamical System Output Dynamical System

φ̇i = ωi − Ke(t) sin(φi), (1) ż = Ω
(
αz(βz(g − y) − z) +

∑N
i=1 Ψiwi r
∑N

i=1 Ψi

)
, (8)

ω̇i = −Ke(t) sin(φi), (2) ẏ = Ωz, (9)

e(t) = ydemo(t) − ŷ(t) Ψi = exp(h(cos(φ − ci) − 1)), (10)

ŷ(t) = ∑M

i=0 αi cos(φi), (4)

α̇i = η cos(φi)e(t), (5)

K = 20 αz = 8

M = 5 βz = 2

η = 1 N = 25

h = 2.5N , c ∈ [0,2π]
λ = 0.95, (14)

The number N of Gaussian-like kernel functions could
be set automatically if we used the locally weighted learning
(Schaal and Atkeson 1998), but for simplicity it was here set
by hand. Increasing the number increases the accuracy of
the reconstructed signal, but at the same time also increases
the computational cost. Note that LWR does not suffer from
problems of overfitting when the number of kernel functions
is increased.3 Figure 7 shows the error of learning er when
using N = 10, N = 25, and N = 50 on a signal ydemo(t) =
0.65sin(2πt) + 1.5cos(4πt) + 0.3sin(6πt). Throughout the
paper, unless specified otherwise, N = 25.

The forgetting factor λ ∈ [0,1] plays a key role in the be-
havior of the system. If it is set high, the system never forgets
any input values and learns an average of the waveform over
multiple periods. If it is set too low, it forgets all, basically
training all the weights to the last value.

Unless stated otherwise, the parameters presented in Ta-
ble 1 are used in this article. Besides the fixed parameters,
the system also includes three control parameters that can be

3This property is due to solving the bias-variance dilemma of func-
tion approximation locally with a closed form solution to leave-one-out
cross-validation (Schaal and Atkeson 1998).

used to modulate trajectories during replay. These are g for
the anchor point of oscillations (see (8)), r for the amplitude,
and Ω for the frequency (see Sect. 4.1).

3.4 Combined system

In this section we present the behavior of the combined sys-
tem with both frequency adaptation and waveform learning.
Figure 8 shows the results for the case when the Canonical
Dynamical System is still adapting to the frequency of the
input signal.

Frequency adaptation affects the output of the combined
system through both the frequency Ω and the phase Φ . The
frequency Ω , while it is not completely adapted, affects the
target trajectory, see (11). The phase Φ , while the frequency
is changing, leads to an incorrect mapping of the input sig-
nal to the weight vector of the kernel functions. In order to
learn the waveform of only one period of the demonstration
signal, the frequency has to be adapted. Depending on the
initial condition of the oscillator, coupling strength K , and
complexity of the signal, the time it takes for the Canoni-
cal Dynamical System to adapt to the frequency of the in-
put signal varies. In our case, and this applies to the general
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Fig. 8 The result of learning
combined with frequency
adaptation. Again the input
signal is the dash-dot line. The
middle-right plot shows the
square of the difference of the
input and the learned signal. The
bottom left plot shows the
frequency of the adaptive phase
oscillator, for clarity reasons
only the fundamental frequency
is shown. 5 oscillators were
used in the canonical dynamical
system even though the input
signal has only 2 frequency
components. The other
determined frequencies are
4π rad/s (the other component
of the signal), and 22.994 rad/s
(random value of the frequency
that an oscillator was at when
e(t) = 0, see (1)). Two
oscillators converged to the
same frequency for 2π and
4π rad/s

Fig. 9 Results of learning a complex signal ydemo = 3 + 2sin(πt) + sin(2πt) + sin(4πt + π/3) + 0.5sin(6πt) + cos(8πt) with 6 frequency
components and the fundamental frequency Ω = π rad/s extracted using M = 5 oscillators. The vertical dash-dot line marks the transition
between learning and pure reproduction. Since we used fewer oscillators than there are frequency components in the input signal, the frequency
was oscillating slightly. At the time of the switching between learning–reproducing, it was not exactly at π , thus the slight delay of the signal.
When repeating the signal, the fundamental frequency is one of the control parameters and can be freely changed

case as well, we make sure this time is very short with a
high value of K . The learning of the weights takes place
even as the frequency is still adapting. Once the adaptation
of the frequency is complete, the weights (due to the for-
getting factor λ) very rapidly take their final value. The out-
come can be seen in the start of the plots in Fig. 8. We can
see that the frequency roughly stabilizes within 3 seconds
(bottom-left plot), leading to a linear increase of the phase
Φ (bottom-right). The matching of the input and output sig-

nal (top-left) is even faster as a result of the forgetting fac-
tor.

Figure 9 shows the results for a more complex signal,
this time with 6 frequency components. The input signal is
the dash-dot line and the output signal is the solid line. The
vertical dash-dot line marks the transition between learning
and pure reproduction. As we can see, the input and out-
put signal are almost identical for both cases; a slight shift is
present because of difference in frequencies. This is because
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Fig. 10 The middle plot shows
the input signal ydemo . The
bottom plot shows the frequency
adaptation. The top plots show
close-ups of the interesting
parts. Refer also to the text

the fundamental frequency was determined using M = 5 os-
cillators, therefore the adapted frequencies oscillate slightly
as there are fewer oscillators than there are frequency com-
ponents in the input signal.

An interesting aspect of our system is also the ability
to deal with non-stationary signals and to adapt to changes
of the input signal both in waveform and frequency. Fig-
ure 10 presents the results of a system adapting to a sig-
nal where the waveform of the input signal introduces a
frequency doubling as it changes from ydemo(t) = sin(4πt)

to ydemo(t) = sin(4πt) + (1 − e0.085t )sin(2πt). As we can
see, the learned signal has a double peak even before the
Canonical Dynamical System has determined the frequency
halving. This is a result of the forgetting factor λ = 0.95
and rapid weight learning. Once the oscillations of the fre-
quency signal are big enough (bottom plot), one of the os-
cillators “jumps” into another basin of attraction, adapting
to a new frequency (2π ), and the system then takes this fre-
quency to be the fundamental Ω . We can see in the top right
plot that the learned and the demonstration signal are almost
identical after t = 32 s. A higher K makes the frequency
“jump” happen faster, as it increases the oscillations of the
estimated frequency. Determining that the frequency halved
clearly demonstrates the ability of the system to adapt to the
changing input signal.

The combination of frequency adaptation and wave-
form learning exploits the advantages of both systems. The
biggest advantage of all is the fact that the frequency of

the input signal does not have to be pre-determined. For
the Output Dynamical system to work correctly, the fre-
quency of the input signal has to be known. The combined
system eliminates the need to somehow pre-determine the
frequency and thus allows the system to be used in an al-
most black-box fashion, i.e., without manual intervention of
a user.

Even though the canonical dynamical system by itself
could reproduce the demonstration signal (ŷ, (4)), using the
Output Dynamical system allows for easier modulation in
both frequency and amplitude, learning of complex patterns
without extracting all frequency components, is more ro-
bust to perturbations, and acts as a sort of a filter. More-
over, when multiple output signals need to be synchronized
by the canonical system, only one canonical system is used
as a “pace maker”, and the individual output systems need
to make sure that the waveforms of the different degrees-of-
freedom is realized appropriately.

4 System properties

In this section we present the behavior of the system when
modulating the learned trajectories, dealing with perturba-
tions, and dealing with multiple DOFs in parallel. The de-
scribed possibilities are the properties of both the Canonical
Dynamical System and the Output Dynamical System. All
the modulations are applied when repeating the signal and
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Fig. 11 Modulations of the
learned signal. The learned
signal (top), modulating the
baseline for oscillations g

(second from top), doubling the
frequency Ω (third from top),
doubling the amplitude r

(bottom)

Fig. 12 Dealing with
perturbations: Reacting to a
random perturbation of the state
variables y, ẏ and Φ at t = 30 s

the Canonical Dynamical System is a phase oscillator (see
(6)).

4.1 Modulations of learned trajectory

The system is designed to permit on-line modulations of the
trajectories originally learned. This is one of the important
motivations behind the use of dynamical systems to encode
trajectories.

Changing the parameter g corresponds to a modulation of
the baseline of the rhythmic movement. This will smoothly
shift the oscillation without modifying the signal shape. The
results are presented in the second plot in Fig. 11. Modifying
Ω and r corresponds to the changing of the frequency and
the amplitude of the oscillations, respectively. Since our dif-
ferential equations are of second order, these abrupt changes
of parameters result in smooth variations of the trajectory y.
This is particularly useful when controlling articulated ro-

bots, which require trajectories with limited jerks. Changing
of the parameter Ω only comes into consideration when one
wants to repeat the learned signal at a desired frequency that
is different from the one we adapted to with our Canonical
Dynamical System. Results of changing the frequency Ω are
presented in the third plot of Fig. 11. Results of modulating
the amplitude parameter r are presented in the bottom plot
of Fig. 11.

4.2 Dealing with perturbations

The Output Dynamical System is inherently robust against
perturbations. Figure 12 illustrates the time evolution of the
system repeating a learned trajectory at the frequency of
1 Hz, when the state variables y, z and Φ are randomly
changed at time t = 30 s. From the results we can see that
the output of the system reverts smoothly to the learned tra-
jectory. This is an important feature of the approach: the sys-
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Fig. 13 Reacting to a
perturbation with a slow-down
feedback. The desired position y

and the actual position ỹ are the
same except for the short
interval between t = 22.2 s and
t = 23.9 s. The dotted line
corresponds to the original
unperturbed trajectory

tem essentially represents a whole landscape in the space of
state variables which not only encode the learned trajectory
but also determine how the states return to it after a pertur-
bation.

When controlling the robot, we have to take into account
perturbations due to the interaction with the environment.
Our system provides desired states to the robot, i.e. desired
joint angles or torques, and its state variables are therefore
not affected by the actual states of the robot, unless feed-
back terms are added to the control scheme. For instance,
it might happen that, due to external forces, significant dif-
ferences arise between the actual position ỹ and the desired
position y. Depending on the task, this error can be fed back
to the system in order to modify on-line the generated tra-
jectories.

One type of such feedback is the “slow-down-feedback”
that can be applied to the Output Dynamical System. This
type of feedback affects both the Canonical and the Out-
put Dynamical System. The following explanation is for the
replay of a learned trajectory as perturbing the robot while
learning the trajectory is not practical.

For the process of repeating the signal, for which we use
a phase oscillator, we modify (9 and 6) to:

ẏ = Ω
(
z + αpy (ỹ − y)

)
, (16)

Φ̇ = Ω

1 + αpΦ |ỹ − y| , (17)

where αpy and αpΦ are positive constants.
With this type of feedback, the time evolution of the

states is gradually halted during the perturbation. The de-
sired position y is modified to remain close to the actual
position ỹ, and as soon as the perturbation stops, rapidly re-
sumes performing the time-delayed planned trajectory. Re-
sults are presented in Fig. 13. As we can see, the desired po-
sition y and the actual position ỹ are the same except for the

short interval between t = 22.2 s and t = 23.9 s. The dotted
line corresponds to the original unperturbed trajectory. The
desired trajectory continues from the point of perturbation
and does not jump to the unperturbed desired trajectory.

Another example of a perturbation can be the presence
of boundaries or obstacles, such as joint angle limits. In that
case we can modify (9) to include a repulsive force l(y) at
the limit by:

ẏ = Ω (z + l(y)) . (18)

For instance, a simple repulsive force to avoid hitting joint
angles or going beyond a position in task space can be

l(y) = −γ
1

(yL − y)
3 (19)

where yL is the value of the limit. Figure 14 illustrates the
effect of such a repulsive force.

Such on-line modifications are one of the most interesting
properties of using autonomous differential equations for
control policies. These are just examples of possible feed-
back loops, and they should be adjusted depending on the
task at hand.

4.3 Multi-dimensionality

As indicated in Fig. 1, the system can be expanded to sev-
eral dimensions, for instance to control various joints on a
humanoid robot. Basically, the presented system can work
in parallel for each of the given DOF of the signal with all
the processes working in parallel for each DOF. Figure 15
presents the results of frequency and waveform adaptation
for a 2-DOF signal.

When applying the system to more than one DOF, we
have to consider the following scenarios: the trajectories of
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Fig. 14 Output of the system
with the limits set to
yl = [−1,1] for the input signal
ydemo(t) = cos(2π t) + sin(4π t)

Fig. 15 Results for
hand-generated signal with
constant learning and frequency
adaptation. The top left-plot
shows two seconds of the input
(dash-dot line) and the learned
output signal (solid) in 2D. As
the signal is constantly adapting,
the reproduced trajectory is not
stationary. The bottom-left plot
shows 2 s of the input signals
(dash-dot) and the output
signals on a common axis. The
top-right plot shows the learned
frequencies. The bottom-right
plot shows the power spectrum
for both dimensions of the input
signal. Notice that the system
has found that Ωx

∼= 2Ωy

separate DOF are frequency locked (i.e. there is a ratio-
nal ratio between all DOFs), or they are not. Frequency-
locked trajectories would typically be produced by a sys-
tem in which the various DOFs are coupled (e.g. the human
musculo-skeletal system). When recording the motion of the
human arm performing a repetitive task in 2-D space, e.g.
moving a computer mouse in the shape of a figure-8, it is
obvious that the motion is frequency locked, and also has a
common “clock”, as presented in the left plot of Fig. 17. The
opposite case is using separate “clocks” for separate DOF,
presented in the middle plot of Fig. 17.

When applying our system in parallel for both frequency
and waveform learning, the results of the frequency learning
for separate DOF will not return exactly the same value for
the frequency, leading to drift of the signals when repeating.

Fig. 16 Modified structure of the system with an introduced logical
block to determine frequency ratios

Also, the frequencies can be multiples of each other rather
than the same values (Fig. 15). While we do on-line learning,
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Fig. 17 Using a common clock
for all the DOF (left). Using
different clocks for different
DOF or actuated systems
(center). Using two coupled
clocks for two multi-DOF
systems (right)

this is constantly corrected for by the learning and the fre-
quency adaptation, and does not pose a problem. When re-
peating the signal, on the other hand, this has to be corrected
if we want to avoid drift. There are different approaches to
solving this problem.

Using a logical block. One of the options is to use sim-
ple logical operations to determine if separate degrees of the
signals should have a common frequency, i.e. we can use
the same frequency for both signals if they are within a cer-
tain interval or if their ratio is within a certain interval (e.g.
rounding the ratio of two measured frequencies 1.01 Hz and
2.0 Hz to 2, and using a common fundamental frequency
of 1.01 Hz). Additionally, a logical block can determine the
common frequency when signals are in a ratio of, e.g. 4 vs.
3 (as within the Canonical Dynamical System for a single
DOF), even though such an example might not be too com-
mon.

Using only one fundamental frequency Ω has to be con-
sidered not only in repeating the signal but also when learn-
ing, i.e. constantly changing the weight vector. Using only
one frequency, e.g. 1 Hz for Ωx = 1 Hz and Ωy = 2 Hz,
means that we have to stretch ydemo,y(t) over two periods
(but with the same number of kernel functions) resulting in
slightly less accurate signal reconstruction. Figure 16 shows
the control scheme for such an approach. This is the ap-
proach we use in all of the presented results unless stated
otherwise.

A slight modification of using such a block is simple
rounding of the ratio and using a separate Canonical Dy-
namical System for each of the DOF. The draw-back of this
approach is that there is no common clock and that we need
separate Canonical Dynamical Systems also when just re-
peating the signal. Additionally, we have to know the ratio
when repeating the signal. On the other hand this approach
allows changing the frequency ratio between separate DOF.

Adding the signals. One of the possible approaches is to
add the signals of separate DOF, and to input the added
signal into a single Canonical Dynamical System that can
handle the number of frequency components of such a sig-
nal. This can have unwanted side-effects, such as doubling
or canceling-out frequencies. Furthermore, since the signals
are from the same system, noise in one DOF of the sig-
nal is almost sure to be present in the other-one as well.

This causes higher oscillations of the estimated frequency.
Nonetheless, for simple signals, such an approach works
quite well.

Coupling the signals. This approach comes into consid-
eration only when considering signals that are not just the
DOFs of a common system. An example of such is drum-
ming with both hands. Even though using a common clock
for both hands would do, we can as well couple the two
oscillators of separate arms and obtain a single resulting fre-
quency due to synchronization. To do this, we edit the equa-
tion of separate phase oscillators given by (6) as follows:

Φ̇11 = Ω1 + bsin (Φ2 − Φ1) , (20)

Φ̇2 = Ω2 + bsin (Φ1 − Φ2) , (21)

which is also a model of oscillatory behavior of biological
systems (Crespi et al. 2005). This approach is only applica-
ble when reproducing a learned signal and not while learn-
ing it.

For all the applications using the arms of the HOAP-2
robot we used a common clock for all of the DOF.

5 Experimental evaluation

In this section we present experimental evaluations of our
system in different experiments.

5.1 Experimental setup

We tested the proposed system in learning of the frequency
and waveform by demonstration with a humanoid robot
HOAP-2. HOAP-2 is a humanoid robot constructed by Fu-
jitsu, and has altogether 25 DOF, of which we used 8 DOF
to control the movement of the arms.

To control the robot, we separated the interface and the
dynamical systems on one side, and the actual control of
the robot’s motion on the other side on two computers, as is
presented in Fig. 18.

The implementation of both dynamical systems on the
interface side assumes a common time step for numerical
integration. On the interface side we record the position
of the mouse cursor (or some other input device) in Mat-
lab/Simulink and send it to the computer controlling the
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Fig. 18 Schematic of the robot control. We input the signal with a
computer mouse in a Matlab/Simulink environment, run it through the
Dynamical System and send it over the LAN using the UDP protocol
to the computer controlling the robot in real time

robot, with a frequency of 100 Hz. The robot is position-
controlled using Fujitsu’s PID controller with a frequency
of 1000 Hz. Since the robot control is 10 times faster than
the loop on the side of the dynamical systems, the referential
values between two received values are generated by inter-
polation.

5.2 Joint/task space

For a serial mechanism such as a robotic arm to repeat a tra-
jectory, it has to learn the motion of all the joints. Our system
allows us to either learn all of the joint trajectories directly
or to learn the trajectories of the end-effector in task space
and apply inverse kinematics algorithms to map the motion
to the joints of the robot. By applying inverse kinematics al-
gorithms we (usually) have to learn fewer trajectories, but
we give up some of the control to the inverse kinematics al-
gorithm.

Using such control structure we implemented a drum-
ming task with a slightly simplified inverse kinematics al-
gorithm that pre-determines one of the orientations in space,
by-passing the problem of the arm redundancy.

5.3 Different inputs (mouse, Wiimote, robot)

The system is designed to work with any input device we
can interface with the Matlab/Simulink environment. In this
section, we present three different input options.

Computer mouse. With a standard computer mouse we
can input a 2 DOF signal, which is enough for a simple
one-handed drumming task or for repeating different arm
trajectories on a plane. This is an easy way to record hu-
man motion, but requires some scaling of the robot’s mo-
tion. Performing a periodic trajectory with a mouse usually
also requires some practice.

Nintendo Wii remote. The Nintendo Wii remote or a Wi-
imote is a joystick of the Nintendo Wii game console. It has
an infrared camera to track position of IR LEDs and gyro-
scopes for the orientation (see www.nintendo.com). It can
be interfaced with a personal computer over the Bluetooth.

Fig. 19 Two handed drumming with the HOAP-2 robot

We used 2 Wiimotes to record the position of the demon-
strator’s hands and repeated two-handed drumming with the
robot, as shown in Fig. 19. Using a Wiimote has the same
scaling draw-back as using a computer mouse. Furthermore,
the Wiimotes require quite precise movements of the arms,
maintaining the “aim” at the IR LEDs (the sensor bar). Nev-
ertheless, we can record 6 DOF per Wiimote. The draw-back
of using the Wiimotes is the “coupling” of the position and
orientation, i.e., when changing the yaw of the device, we
also change the position. This can be solved by fixing the
Wiimote and moving the IR LEDs, but that deprives us of
the buttons. As our robot only has 4 DOF per arm, we were
only interested in the position, using 2 Wiimotes for 6 DOF.

Kinesthetic demonstration. We can also record the robot
motion by moving the robot by hand and adapting to the
recorded joint positions (see also Hersch et al. 2008). This
way we record all the joints we want to use, by-passing the
inverse kinematics algorithm and also the calibration/scaling
problem. The draw-back is that complex simultaneous mo-
tion of several DOF is difficult to achieve.

5.4 Different tasks

In this section we present some of the trajectories we learned
with our system. Figure 20 shows some of the learned tra-
jectories demonstrated on the HOAP-2 robot.

We tested the system for more complex trajectories,
which are quite difficult to repeat periodically with the hand
with a computer mouse/Wiimote or by kinesthetic demon-
stration, so we generated the signals. Figure 21 shows the
results for two different 2D patterns. For both patterns we
used N = 100 kernel functions. As we can see, the system
successfully learned both patterns. The frequency adaptation
took longer due to the increased complexity of the signal.

http://www.nintendo.com
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Fig. 20 Some of the learned 2D trajectories using a computer mouse as the input. The figure includes tracked trajectories of the tip of the robot’s
arm, and the plots of the input (dotted) and the learned trajectory (solid line)

Fig. 21 Our system can cope with signals with multiple frequency components. Bottom plots show only the chosen fundamental frequency. The
plotted signals were created during the repeating phase. To demonstrate the abilities of the system, the plots were done using the middle scheme
from Fig. 17

5.5 Movement recognition

An interesting aspect of the system is that, given the tem-
poral and spatial invariance of the representation, trajecto-
ries that are topologically similar are fit by similar parame-
ters wi (Ijspeert et al. 2002a). To illustrate the possibility of
movement recognition, we compared some of the trajecto-
ries presented in Fig. 20. Each of the trajectories was man-
ually recorded 5 times. Similarities between two trajecto-
ries can be measured by computing the correlation between
their parameter vectors. The correlation gives the cosine of
the angle between these two vectors. It can be calculated

by
wT

1 w2
|w1||w2| , where w1 and w2 are the parameter vectors of

two trajectories. These vectors are the union w1 = [wx

1,w
y

1]
of the parameter vectors for the x(t) and y(t) trajectories.
From Fig. 22 we can see that the system clearly identifies
similar trajectories (i.e. finds a high correlation between the
5 repeats of the same movement) despite the variations that

naturally occurred when manually producing them. This can
also be verified with a statistical t-test, which rejects the hy-
pothesis that weights wi at position i are distributed around
the mean value of weights at position i for a different trajec-
tory.

6 Discussion

In this section we first discuss the possibilities our systems
presents us from the point of view of systems for imitating
trajectories, followed by a discussion on expanding the sys-
tem to combine different movements.

6.1 Possibilities of the system

This article presents a system for learning the frequency and
the waveform of a periodic signal. The system was designed
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Fig. 22 In the top left plot we
can see the calculated
correlation, which is marked
with darker squares for higher
values. We can tell that some
signals are more alike than the
others, by having the diagonal
squares darker than the other. In
the other plots we can see the
weight vectors for three
different trajectories. Each
trajectory was manually
repeated 5 times. Top-right the
hitting of two drums (as in last
plot of Fig. 20), bottom left a
circle and bottom right a
horizontal figure-8

to match the desirable characteristics of an imitation system
that we listed in Sect. 2.

Ease of learning and representing a trajectory. In the su-
pervised learning framework presented in this paper, learn-
ing is based on locally weighted regression, which has sev-
eral interesting properties. The computation is very fast
compared, for instance, to gradient descent methods such
as back-propagation in neural networks (Simard and LeCun
1991).

The parameters wi are learned completely independently
for each kernel function Ψi . This is not the case for radial
basis functions, whose parameters are learned cooperatively.
Here, the parameters wi are independent of the number of
basis functions and only depend on the location of the center
of each kernel. They can be used robustly for categorization
of different learned trajectories.

The parameters wi are learned incrementally and ad-
justed each time a new data point is provided. With the for-
getting factor λ set under 1.0, the newer values are given
more weight, allowing changes to the trajectory on the fly.

For the learning of the weight parameters wi to be effec-
tive, the frequency Ω of the input signal has to be known.
The used adaptive frequency oscillators in a feedback loop
allows quick and accurate frequency adaptation of both
hand- and numerically-generated signals. All of the signal
processing is embedded in the dynamics of the Canonical
Dynamical System.

The number of adaptive frequency oscillators needed
for the frequency adaptation was intentionally kept low at
M = 5. Accurate values for complex input signals with mul-
tiple frequency components ensure better results, therefore
for very complex signals increasing this number might be
reasonable. Good results can also be achieved by a low num-
ber of oscillators, but this requires averaging of the chosen
fundamental frequency over a certain period of time. All the
results in this paper were achieved using M = 5 and aver-
aging was not used. The frequency can be arbitrarily mod-
ulated during replay of the signal, as it becomes one of the
control parameters.

Compactness of the presentation. Even though we input
complex trajectories, only a limited number of parameters
wi are needed for encoding them. Similar to via-points, our
presentation is a more compact presentation than storing all
data points. This is further emphasized by the learning of
only one period of the motion. The number and width of the
Gaussian-like kernel Ψi functions can be adjusted depending
on the desired accuracy of the reproduction, with a few and
wide functions for a rough approximation, and many thin
functions for a detailed approximation.

Ability to take perturbations into account. The dynamical
systems do not only encode trajectories, but a whole attrac-
tor landscape. In other words, they also encode how the sys-
tem returns to the learned trajectories after a perturbation
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of the state variables. This means that by design, the state
variables can be perturbed and transient perturbations will
rapidly be forgotten.

Since we generate the trajectories on-line by integrating
the dynamical systems, it is also possible to modify the dy-
namical systems to include feedback terms. This is useful
when the dynamical systems are used to control a robot. In
the case of dealing with obstacles, feedback terms can slow
down the dynamics and/or avoid some areas of the work
space. Similarly repulsive forces can be included to avoid
hitting joint angles limits.

The possibility to do on-line trajectory modulation is a
key property of our system, and we see it as essential for
trajectory planning applications in problems of human-robot
interaction, dealing with contacts, avoiding obstacles and
adjusting to a dynamic environment.

Ease of re-use for related tasks and of modification for new
tasks. Besides the modulations related to perturbations,
possible modulations include changes of frequency, ampli-
tude and baseline. This means that from a single demon-
stration the system is capable of producing a range of tra-
jectories with similar features. This is an important aspect
since it gives the opportunity to reuse learned trajectories
in new conditions. This makes our system similar to pattern
generators observed in animals, for instance central pattern
generators for the control of locomotion (Ijspeert 2008).

Ease of categorization for trajectory recognition. The sys-
tem can to some extent be used for classification of spa-
tiotemporal trajectories. The weight vectors can be used as
a signature of the trajectory, and trajectories with similar ve-
locity profiles can be classified accordingly, for instance, to
their correlation. This makes the system useful for observ-
ing whether the learned movement is new or close to a pre-
viously learned one. This is particularly important to avoid
learning too many movements, when the system is used in a
learning by imitation framework, for instance.

The system, however, cannot differentiate between dif-
ferent trajectories and same trajectories with different con-
trol parameters, such as g. To account for parameter g one
would have to exclude the 0 Hz frequency component from
the demonstration signal, which can be easily done by av-
eraging the learned periodic trajectory. This allows compar-
ison against translated trajectories. The parameter r has no
effect on the correlation as it does not affect the angle be-
tween two vectors.

6.2 Combining movements

This section gives a brief explanation of one of the possibil-
ities offered by the system.

The system is designed to be linear in the weight space,
which means that adding weight vectors of two different tra-
jectories will result in a trajectory which is the sum of the
two trajectories, allowing us to create very complex trajec-
tories, by learning several simple ones. For this to work we
would however need to know the desired phase relation be-
tween the learned signals. As it is, we cannot know whether
the system has learned, for example, sin(t) or sin(t + φ),
and adding the two signals might not result in 2sin(t). Com-
bining the moves is therefore feasible but requires a higher
level of task-oriented control system, which, as such, is not
in the scope of this paper.

7 Conclusion

We presented a dynamical system that allows us to learn
both the frequency and the waveform of the demonstration
signal. To the best of our knowledge, this is the first realiza-
tion of a generic learning system that can learn both quan-
tities at the same time, being based on nonlinear dynamical
systems that can guarantee basic stability and convergence
properties of the learned system. We demonstrated applica-
bility of the suggested techniques by learning various peri-
odic movements for a humanoid robot, and illustrated the
usefulness of the learned parametrization.
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