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Abstract—The recycling of electronic waste (e-waste) presents
significant challenges due to the diverse range of device models
and conditions that need to be treated. This paper presents
an application study that evaluates a reconfigurable modular
robotic workcell platform and adaptation at different levels to
address these challenges. The performance and effectiveness of
the approach are assessed through two common use cases from
the e-waste recycling industry: heat cost allocator disassembly
and smoke detector disassembly, with the goal of battery removal.
The initial setup time (the definition of dismantling procedures
for a new device type), reconfiguration times (changing the
workcell layout to switch between processes for different known
device types) and cycle times (for dismantling one device) were
assessed in terms of their key performance indicators (KPIs).
The evaluation demonstrated the flexibility and adaptability of
the workcell, which enables streamlined process development and
efficient disassembly of electronic devices in different scenarios.

I. INTRODUCTION

The automation of e-waste recycling is a significant chal-
lenge due to the wide variety of device models and their
varying conditions. E-waste recycling is currently dominated
by the “crush and separate” method, in which devices are
crushed into smaller parts that are then physiochemically sep-
arated into reusable raw materials. However, this process often
requires pre-treatment to remove hazardous components such
as batteries or to disassemble parts that cannot be processed
in the crusher. Due to the high variability of the parts to be
removed, automation using traditional robotic systems, which
typically operate within pre-programmed scenarios, is limited
[1]. As a result, these operations continue to be a manual
undertaking, adding to the overall cost of the recycling process.
Current automation of recycling is limited to specific device
models, starting with those that arrive at recyclers in the
largest quantities. By incorporating the concept of robotic self-
reconfiguration[2]], the field of e-waste recycling can move
towards automation and increased flexibility.

E-waste recycling often involves large batches of the same
type of device, which limits variability at least to some extent,
but at the same time we are faced with many different models
within a given device type and the fact that they are in very
different conditions. The high variability of electronic devices
and the variability of device conditions after disposal require
a flexible robotic system that can adapt to different conditions.

Although e-waste recycling still relies on manual labor,
there has been a long-standing interest in automating recy-
cling processes. A study from the early 1990s presented a
conceptual design for a disassembly automation system that

used multiple robots to reuse the resources in used products
[3]. In more recent studies, Zhou et al. [4] focused on the
recycling of battery packs and proposed a framework for
safe and efficient disassembly using multiple cobots. Another
study [S] focused on digitization in e-waste recycling and
presented an automated system for device identification as the
first step in the recycling process. Foo et. al. [1] conducted an
evaluation of the current state of practice and the art in robotic
disassembly, highlighting the complexities of implementing
robotic disassembly systems in practice. They suggest that
cognitive robotic methods and semi-automation should be
explored to sufficiently address the variability of devices to
be recycled and thereby increase the feasibility for robotic
disassembly in the e-waste recycling domain. Laili et al. [6]]
investigated disassembly sequence planning for remanufactur-
ing to develop an optimization model for robotic disassembly
sequence planning. Another important aspect is that devices
are often specifically not designed to be disassembled easily,
necessitating for destructive disassembly steps [7].

In our work, we present a complete pipeline for electronic
device disassembly and battery removal, which is a manda-
tory step before further recycling procedures. Our approach
incorporates perception (device identification and integration
of vision systems for precise localization and object detection)
and uses its results to develop a comprehensive framework for
handling different device models.

This paper focuses on the application of reconfigurable
robotic workcells and the adaptation of the applied opera-
tions in the field of e-waste recycling. Specifically, we focus
on the disassembly of two different types of e-waste: heat
cost allocators and smoke detectors with the goal of battery
removal. In our previous work, we presented a design of
modular robotic workcell platform enabled by Plug & Produce
connectors 8] and a modular software architecture to facilitate
the implementation of such robotic workcells [9]. The pro-
posed approach incorporates toolchains for an efficient setup,
workcell calibration [[10], and programming.

The modularity and reconfigurability of the developed work-
cell enables altering the layout of the workcell quickly and
efficiently. This helps to handle different device types in the
same workcell. To achieve the necessary level of flexibility
to accommodate for the variability of the devices within the
same family, we additionally rely on two types of adaptation
in the recycling cell. We use vision-based action prediction for
situations where multiple actions are possible to continue the



(a) Layout for heat cost allocator disassembly
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(b) Layout for smoke detector disassembly

Fig. 1. Two different layouts of a reconfigurable robotic workcell for automated recycling of electronic waste. The targeted recycling procedure involves the
disassembly of two different families of electronic devices to remove printed circuit boards (PCBs) and batteries.

disassembly process. To account for different objects within
the same device family, we used adaptation of disassembly
skills.

The paper is organized as follows. In Section [[] we present
the key aspects of the reconfigurable workcell and the accom-
panying tools with respect to the design of the dismantling
workflow. We continue by the analysis of different heat cost
allocators and smoke detectors. The disassembly workflows
utilizing reconfiguration and adaptation of the workcell are
presented in Section [l An experimental evaluation is pro-
vided in Section [[V] Finally, in Section [V] we discuss the po-
tential for further exploitation of the reconfigurable workcells
in the field of e-waste recycling.

II. THE ROLE OF RECONFIGURATION AND ADAPTATATION
IN AUTOMATED RECYCLING

A. Modular hardware, soft robotics fixtures and grippers, and
software paradigms facilitating user friendly programming

The primary objective is to develop a workcell that can
be easily adapted to the changes that occur in the products
being recycled, while maintaining the ability to disassemble
previous product versions by reconfiguration of the workcell.
The modular nature of the workcell allows easy integration of
different peripheral devices to support specific disassembly op-
erations. In addition, adaptive hardware is employed, enabling
the recycling of products of the same type without an extensive
reconfiguration of the overall layout. For example, the workcell
layout shown in Fig. [T] (a) is designed for the disassembly of
heat cost allocators of different sizes and conditions, whereas
the layout shown in Fig. [T] (a) is suitable for various smoke
detectors.

To facilitate the programming process, we have introduced
a hierarchical programming paradigm that enables end-users
to intuitively translate their high-level knowledge of the dis-
assembly process into a sequence of operations [9]. This is
complemented by developing a skill library, which contains
typical disassembly operations that can be readily executedﬂ
The library triggers dedicated Robot Operating System (ROS)
interfaces, which in turn provide references to the underlying

Uhttps://github.com/ReconCycle/reconcycle_flexbe

low-level robot controllers or peripheral device interfaces. For
task-level programming, a high-level behavior engine, FlexBE,
has been employed. FlexBE supports creating, executing and
monitoring complex robot behaviors as state machines [11]].
Different FlexBE states encapsulate different actions of robots
or periphery devices, which are designed for reuse across
various operations. Multiple states are combined to describe
parts or the entire disassembly sequence, offering flexibility
and modularity in the programming approach.

To facilitate intuitive acquisition of robotic motions and
the teaching of new skills, we rely on programming by
demonstration [12]], in particular on kinesthetic teaching [13]]
with incremental trajectory refinements [14]. However, it is
important to note that not all tasks can be programmed by
kinesthetic teaching alone. In situations where the positions
of objects cannot be predetermined, vision-based detection of
devices and parts placed on arbitrary modules, as well as
the estimation of their location with respect to the specific
module’s coordinate frame is crucial for successful execution
of various pickup operations within the disassembly process.

Finally, we employ compliant and soft robotic elements.
Soft grippers allow for partial accommodation to different
shapes of objects due to their ability to conform to the shape of
the object being grasped, which is crucial for parts exhibiting
different kinds of damage.

B. Vision-based action prediction

In our system, we rely on instance segmentation based
on YOLOvVS [15] for identifying and determining positions
of specific parts (see Fig. [2). To train the model we use
a 80/10/10 train/validation/test data split with 40.000 auto-
matically labeled images containing different device types
and their parts, augmented from an initial dataset of 1250
manually labeled images. The initial dataset included images
of two different device families (heat cost allocators and smoke
detectors), each containing multiple device models (16 and 15,
respectively). The images were taken on different hardware
modules, and also contain the robot arms with different end-
effectors attached. The images were taken under different
lighting conditions. The augmented dataset was generated in
the following manner: firstly, the device parts were cut out
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Fig. 2. Identification and localization of different devices based on instance
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Fig. 3. Graph representation of detected parts relations.

and pasted onto different background images, thus increasing
the variance with respect to the positioning of the devices
and generating cluttered scenes. We additionally varied the
lightning conditions in the augmented images synthetically.
The trained model achieved mean average precision from 50%
to 95% (mAP50-95) of 0.97 for the bounding boxes and 0.89
for segmentation masks over all classes.

In order to predict, which action we should take next, we
need a higher level interpretation of the state of disassembly.
To do this we create a graph of the identified device parts from
the segmentation results, where nodes represent detections
and edges one of the two possible relations: inside/next to
(see Fig. 3). We then use these relations in combination with
disassembly procedures (described in Sec. [l to determine,
whether:

« grasping and moving of an object to a different module
is possible,

o levering can be performed or there is a plastic clip that
needs to be removed first,

« cutting can be performed,

« milling can be performed.

Based on the changes in the graph representation, we also
check, if the actions were successful.

III. BATTERY REMOVAL FROM DIFFERENT HEAT COST
ALLOCATORS AND SMOKE DETECTORS

Heat cost allocators (HCAs) and smoke detectors are
mandatory in most residential and public buildings in most
jurisdictions. As they need to be replaced in regular time
intervals and typically can not be repurposed, they are one
of the most common devices to finish their life at e-waste
recycling plants. In both cases, the battery needs to be removed
before proceeding with the recycling process, which usually
involves physio-chemical separation of the raw materials. The
battery in such devices poses a safety hazard if it is not
removed beforehand. This is because the battery can catch
fire if it is damaged. To remove the battery, the appropriate
disassembly steps must be taken. These steps are not always
straightforward, as the design of devices rarely takes into
account the importance of ease of disassembly for recycling.

(& ()

Fig. 4. Manual disassembly of a typical heat cost allocator. (a) To begin, a
screwdriver is inserted into the gap at the rear of the HCA. (b) By leveraging
the screwdriver, the internals of the HCA are carefully pried out. (c) The
internals consist of a battery connected to the PCB, along with a white plastic
top cover and a bottom transparent cover holding the display. (d) The white
plastic top cover is then gently removed by levering it, (e) followed by the
detachment of the PCB from the bottom transparent plastic cover. (f) At this
stage, the PCB is completely free. (g) With the PCB and battery held in both
hands, the battery is removed by ripping or cutting thin metal connections to
the PCB. (h) Finally, the battery is detached from the PCB.

In many cases, the battery is specifically not designed to be
removed by the end user.

A. Adaptive disassembly process for heat cost allocators

We first analyzed the disassembly as carried out by a human
operator (see Fig. [d). This analysis served as the basis for
specifying the automated workflow and the modules of the
workcell to carry out the required operations. The steps are
shown in Fig. [5] We equipped the archetypical modules (an
archetypical module is the basic building block from which
different workcells can be constructed [8]]) with a pneumatic-
driven vise and cutter and provided two robot modules. The
other two modules are passive and are used for tool exchange
and as an entry point for devices that need to be disassembled.

The first robot starts by picking up the HCA using the gb
SoftHand Research gripper (based on the Pisa/IIT SoftHand
[17]) and places it into the pneumatic vise, which clamps
the housing firmly so that the second robot can remove
the pin securing PCB in place (if present) and perform the
levering operation to break the PCB out of the housing. The
presence of a pin that must be removed before the PCB can
be levered out is detected by a gap detection algorithm [18].
The levering operation uses a sinusoidal pattern and is encoded
with periodic DMPs [19], [16]. The amplitude and frequency
of the pattern are adjusted to adapt the force needed to lever
the PCB from different HCA types, as demonstrated in Fig.
(b)-(c). The method also uses a force feedback based control
algorithm to determine the contact points between the lever
and the device (see Fig. [f] (a)).

When the PCB is released, the gb Variable Stiffness gripper
(VSG, based on the VSA-CubeBot platform [20]) mounted on
the second robot clamps and transfers it to the cutter module.
At the same time, vise jaws are opened, allowing the first
robot to pick up the empty housing using the gb SoftHand and
transfer it to the designated container. When the battery is cut
from the PCB, the second robot picks up the battery and places
it into the container designated for the removed batteries.
The high-level specification of the disassembly process was
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Fig. 6. Adaptive levering can be executed for different device types.

programmed as a FlexBE behavior, while the robot configu-
rations and trajectories needed to execute the required robot
operations were obtained from robot vision (pickup locations
for the smoke detector and battery, location for pin removal)
or demonstrated by kinesthetic teaching.

The first part of the video in the supplementary materials
shows how instance segmentation is used to perform semantic
scene analysis, which was used to determine relations between

the parts present in the scene in order to determine which of the
possible follow-up actions should be performed. The second
part of the video shows how the parameters of a predefined
levering action are adapted to learn a levering behavior for a
specific heat cost allocator.

B. Adaptive disassembly process for smoke detectors

We performed an analysis of different smoke detectors to
determine their common features and to motivate the choice
of tooling and disassembly procedures. Four different smoke
detectors are shown in Fig. [§]

The smoke detectors were all round or cylindrical in shape,
with a diameter between 90 and 120 mm and a height ranging
from 25 to 60 mm. This suggests that a three-finger industrial
pneumatic robot gripper (shown in Fig. [I0) can be used to
grasp them robustly. Such grippers are designed for grasping
cylindrical objects. In addition, the three fingers move equal
distances, which ensures that every grasped smoke detector
is centered within the gripper. To maximize the amount of
different smoke detectors that can be grasped, it is desirable
that the gripper has a large stroke.

Different parts of smoke detectors (which mainly consist
of a plastic cover and internal components) are held in place
either by screws or by plastic tabs that lock the two parts
together. In the case of screw connections, 2-4 Phillips, Torx,
or Hex head screws are used. The unscrewing process is
challenging to automate, considering the fact that unlike auto-
matic screwing solutions where the screws are new, the screw
heads may already be damaged when unscrewing. Disassembly
of smoke detectors held in place by plastic tabs is also
challenging to perform by a robot without a special tool. Tabs
tend to require both high forces to remove them and precise
robot gripper positioning. In some cases, multiple tabs must
be pressed simultaneously, which is difficult to achieve with
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different stages of the workflow for two example devices.

generic solutions and would require device-specific solutions.
For this reason, in this paper we consider cutting an opening
to access the batteries using a CNC mill.

A variety of battery types can be found in the analyzed
smoke detectors. The batteries can be either button-type (CR
2032), AA-type (LS 14500 or CR 17450), while in other cases,
cell packs of lithium batteries (such as 3CR2) are used. Some
examples of batteries are shown in Fig. [0 (a). The removal
steps for these batteries vary considerably. Button-type batter-
ies are replaceable and not soldered in place, therefore they can
be removed with, for example, a vacuum suction gripper. The
AA-type batteries are usually soldered in place, as seen in Fig.
|§| (b). This means a considerable force is required to remove
them, so the contacts must usually be removed in some other
fashion. Cell packs of lithium batteries are also complicated to
remove. In most cases, the batteries are connected to the device
via wires, as shown in Fig. [§] (third row). Cutting them requires
care, as cutting both wires simultaneously can lead to a short-
circuit and fire. In addition, the cell packs are usually epoxied
within the plastic cover of the smoke detector, preventing their
separation.

The analysis of the smoke detectors revealed that they
nevertheless share some common features. This suggests that
a standardized approach to disassembly can be developed so
that the batteries found in these devices can be removed.

Since different smoke detectors have to be opened in a
variety of ways, we decided to employ a CNC milling machine,
which can be used to cut a desired shape into a device.
This removes the need for less robust operations, such as
unscrewing or precise levering at multiple locations. We use an
off-the-shelf CNC milling machine Genmitsu PROVerXL 4030
(shown in Fig. [TT). It operates based on input G-code, which
specifies the sequence of milling operations. The initial G-code

program is generated by an application engineer using an off-
the-shelf CAD/CAM software package.The engineer decides
which parts to cut based on the smoke detector’s geometry and
battery position within the smoke detector’s internals. The G-
code is designed for a single fixed pose of the smoke detector.
If the position or orientation of the smoke detector changes,
the path described by the G-code is dynamically translated
and rotated based on the information provided by the vision
system.

During the disassembly pipeline, machine vision is utilized
at several steps, i.e., to detect the smoke detector location for
pickup, to detect its orientation for computer numerical control
(CNC) milling and to detect the battery location for extraction.
At the start of the disassembly cycle, we employ machine
vision to detect the location of a smoke detectors placed on
the Material Input Module and transport them to the CNC
Module. Vision is then further used to detect battery location
and predict the optimal extraction method and to determine
whether each disassembly step has been successful.

The three-finger gripper in the robot’s end-effector is used
to reliably grasp and center the smoke detector within the
gripper. The robot transports the smoke detector into the
milling machine, where it is securely clamped with a three-
finger gripper similar to the one used on the robot. Once the
smoke detector is placed in the CNC machine, its precise
orientation must be determined. To do this, the second robot
moves over the CNC machine and uses an eye-in-hand depth
camera (Realsense D435) and the aforementioned YOLOVS.
This orientation is then utilized to rotate the coordinates in the
G-code. Subsequently, the CNC machine performs the milling
to cut out the plastic part above the battery. A small tab is
left in place to ensure that the plastic part does not fly off the
machine or break the mill.



)
=
%

'\\

I

Fig. 8. Front, back and internal views of different smoke detectors.
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(a) Example batteries. (b) Soldered connections.

Fig. 9. The example batteries found in smoke detectors. Most of them are
soldered to the PCB, preventing easy disassembly.

(a) Type 1. (b) Type 2.

Fig. 10. A three-finger gripper holding two different smoke detectors.

(a) Cutting.

(b) Smoke detector top removed.

Fig. 11. Removal of plastic cover from a smoke detector with a CNC milling
machine.

Depending on the smoke detector type, the battery is either
directly soldered onto the PCB or it is connected with wires.
In both cases, the vision system can detect the battery. In case
of direct solder connection, the battery is removed by milling
away the contacts with the CNC machine. Alternatively, this
could be achieved by performing a levering action with the
second robot, which is equipped with the VSG. Finally, the
battery is transferred to the dedicated bin using a vacuum
suction gripper to lift the battery, which pose is detected by
the eye-in-hand camera.

The third part of the video submitted as part of supplemen-
tary materials demonstrates the entire disassembly procedure
for both smoth detectors.

IV. EVALUATION

To benchmark the proposed dismantling processes, we de-
fined several key performance indicators (KPIs). The desired
KPIs are based on the economical feasibility study conducted
within a partner recycling plant.

The time of hardware reconfiguration and software policy
adaptation when switching the dismantling process from a
known device of one family, to an unknown device of another
family, provided that the device falls within the reconfigu-
ration range of the existing hardware elements, should be
less than 1 day. To manually reconfigure the cell layout for
dismantling the HCAs into the layout suitable for dismantling
smoke detectors, approximately 4 working hours were needed.
Despite the modularity of the software infrastructure, some
manual changes in the software initialization scripts and digital
twin have to be made to reflect the updated cell layout. This
time could be further reduced by including unique identifiers
on each of the PNP connectors in the modules to be able
determine the cell layout geometry automatically. It should
be noted, however, that the main time burden lies in the
development of hardware elements, e.g. the design of custom
adapters for connecting new tools to tool exchange system,
and the integration of the accompanying software.

The time needed for hardware reconfiguration and software
policy adaptation when switching the dismantling process from
a known device to an unknown device within the same family
of devices, provided that the same sequence of operations can
be applied (albeit with changed parameters) should be less than
15 minutes. In our use cases, this kind of policy adaptation was
necessary for the adaptation of levering operation in the PCB
removal step in HCA disassembly pipeline (see Fig. [3). The
adaptation took less than 1 minute.

Time of hardware reconfiguration and software changes
when switching the dismantling process from a known device
of one family, to a known device of another family should
be less than 5 minutes. In our system, this is handled within
the disassembly pipeline, as the next step of the dismantling
procedure along with parameters is obtained online based on
scene analysis (see “Get next action” blocks in Figs. [5). If
tool exchange is necessary, this increases the time by 10-15
seconds, depending on the initial and final positions where the
robot is expected to be before and after the tool exchange.

To achieve desired throughput of at least 80 pieces per
hour in the recycling line, the cycle time should be below
50 seconds. Although the current cycle times for dismantling



HCA types and smoke detectors range around 65-75 seconds
(time varies depending on the number of repetitions of the
movement pattern required to perform levering operation or
prying out the battery by rocking motion), these can be reduced
by optimizing the process flow. Apart from increasing the
movement speed or reducing waiting times, the tasks could
be parallelized (e.g. the first robot can already transfer the
casing into designating bin, while the second is transferring
the PCB to the cutter). Process optimization was however not
the primary goal of this study.

As for the qualitative requirements, the reliability is crucial.
To avoid potential fire, batteries have to be robustly detected
and removed from the devices. This sets demanding KPIs
for the vision system, which should be able to detect the
presence of batteries with nearly no false negatives. The
procedures for the manipulation of different device parts and
the extraction of batteries from different electronic devices
should be equally robust and reliable. In our experiments, we
dismantled 80 exemplars of HCAs and 30 exemplars of smoke
alarms, achieving more than 95% rate of successfully removed
batteries. In the case of unsuccessful cutting, parts were put
in a designated bin for manual inspection.

V. CONCLUSION AND FUTURE WORK

In this paper we explored the application of self-
reconfigurable hardware and software and policy adaptation for
the disassembly of electronic devices. This is important to deal
with the unique challenges of e-waste recycling that arise from
the variability and unknown condition of the disposed devices.
The introduction of reconfigurable robotic workcells in the e-
waste recycling sector holds great potential for streamlining
the recycling process and improving profitability, efficiency,
and environmental impact.

Our approach is built upon a modular hardware and software
platform that enables rapid integration, flexible reconfigura-
tion, and efficient development [9], [8]. We have implemented
the disassembly procedures for heat cost allocators and smoke
detectors. The main contribution of the paper lies in the
demonstration of the successful application of the proposed
software and hardware architecture in the domain of e-waste
recycling, thereby proving the importance of hardware recon-
figuration and policy adaptation to handle the variability of the
disposed electronic devices.

In addition to the proposed architecture, we believe that
there are several other factors that can contribute to the ad-
vancement of e-waste recycling. In order to facilitate different
recycling processes, it is crucial for the design of electronic
devices to consider their end-of-life phase and the need for the
removal of batteries. Better design choices, prioritizing easy
removal of potentially hazardous components such as batteries,
would contribute to the more effective e-waste recycling and
resource recovery.

Our current work focuses on the further improvements of
the proposed architecture, including design of general purpose
fixtures to account for different device geometries, implement-
ing additional operations such as unscrewing.
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