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Abstract— The advances in humanoid robots in recent years
have given researchers new opportunities to study and create
algorithms for generating humanoid behaviors. Not surprisingly,
most approaches for creating or modifying behaviors for complex
humanoids require specialized knowledge and a large amount of
work. OQur aim is to provide an alternative, intuitive way to
program humanoid behavior. To do this, we examine human-
to-human skill transfer, specifically coaching, and adapt it to
the humanoid setting. We enable a real-time scenario where a
person, acting as a coach, interactively directs humanoid behavior
to a desired outcome. This tightly coupled interaction between a
person and a humanoid allows efficient, directed learning of new
behaviors, where behavior characteristics can be modified on-
demand. Communication is realized through demonstration and a
coaching vocabulary, and changes are effected by transformation
functions acting in the behavior domain.

I. INTRODUCTION AND RELATED WORK

In film and literature we often see people interacting with
robots just as they do with other people: for example, they use
natural communication such as speech and gesture to direct
robots. In this fictional world, even people who are not robot
experts can control complex machines including humanoids
with ease. However, in today’s reality creating behaviors for
humanoid robots remains a task for specialists, where commu-
nication of behavior details is often time-consuming and takes
place largely through the mechanisms of programming.

One way we can begin to address this disconnect between
imagined possibilities and current reality is by focusing on
paradigms which afford more intuitive methods for creat-
ing robot behaviors. Human-to-human skill transfer is an
especially interesting model for building robot behaviors, as,
besides efficiency, it offers a familiar context to people dealing
with humanoids: rather than learning special skills, people can
bring their own knowledge from interacting with each other
directly into the humanoid domain. In this work we develop an
approach to generating robot behavior modeled on a particular
type of skill transfer: coaching, where a robot acquires new
skills with guidance from a human coach. For this work, we
explore the specific behavioral domain of movement. Where
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possible, we emulate the efficiency of human skill transfer,
and because of the familiar, high-level control afforded by
coaching we enable non-specialists to participate in creating
robot behaviors.

Other robotics researchers inspired by coaching include
Nakatani and co-authors [1], who use coaching to aid in
balance and walking controller design for a biped robot. Their
experiments nicely demonstrate the efficiency gains of intro-
ducing intuitive human instruction into the controller design
loop, and although their solution is directed toward specialists,
the authors encourage creation of adaptable interfaces to allow
non-specialists a role in such control. Our approach is more
general purpose, targeting trajectory-based movement acquisi-
tion and subsequent refinement, and provides mechanisms for
novel behavior acquisition and an interface with affordances
suitable to specialists and non-specialists alike.

In [2] robot coaching is used in a teaching scheme for a
mobile robot where the emphasis is on learning representations
for high level tasks rather than on motor skill acquisition. The
coaching component, like our system, uses both demonstration
and verbal input to direct a robot, although demonstration
in [2] is limited to recognizing known primitives, and new
behaviors are limited to combinations of these primitives.

In interactive evolutionary computation (IEC), human eval-
uation is used in optimizations as fitness functions [3], and
although especially suited to topics like music retrieval where
subjective evaluation is critical, IEC has proven useful in
a number of fields including robotics [4]. It differs from
coaching, however, in that evaluations usually take the form
of selecting preferences from a range of current possibilities,
while in coaching specific feedback about how to improve a
performance is given.

Motion editors have also been used to create new robot [5]
and virtual human behaviors [6], [7], [8]. In [5] Kuroki and
colleagues present a motion editor specifically designed for
a small biped robot using the graphical tools common in
motion editors such as inverse and forward kinematics modes,
pose control, pose interpolation, and blending functions. Our
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approach differs from this and from most motion editors
from the graphics community in the way the user interacts
with the robot: our human-robot communication takes the
form of a coach’s demonstrations and high-level qualitative
instructions, while motion editors offer powerful but less
intuitive motion editing paradigms requiring more training to
master. In addition, our system keeps live robot performance
in the loop, allowing for timely evaluation by the coach.

In the next sections we discuss the role of a coach in motor
skill acquisition, followed by our adaptation and implementa-
tion of useful coaching formalisms comprising our humanoid
coaching system, including domain-specific vocabulary, trans-
formation functions, modes of demonstration, and mechanisms
for focusing student attention in both time and body space. We
then discuss our experiments coaching a robot in catching,
and in throwing a ball into a basket. All exchanges occur in
a real-time interactive setup that preserves the iterative nature
of coaching and the tight coupling among effort, evaluation
and guidance.

II. THE ROLE OF A COACH IN HUMAN SKILL TRANSFER

In building our humanoid coaching system, we first studied
human coaching, with particular emphasis on the role of the
coach in teaching motor skills. In general, a coach is an expert
whose job is to improve the performance of a student. This
means providing instructions which are incorporated into the
student’s learning sessions to produce a successful outcome.
Coaching, being a well-established field, offers us a number
of formalisms for teaching new skills. These include acquiring
new motor knowledge; focusing attention on relevant task
features to improve learning of critical task aspects; assigning
priorities among goals; giving specific feedback to improve the
performance; giving a strategy for correction; and helping to
iteratively define the characteristics of a successful outcome.
These coaching methods imply a tightly coupled interaction
between coach and student where close observation of student
performance is followed by feedback or further instructions
from the coach.

The role and usefulness of an expert to guide a student has
been well-studied in humans. Performance and learning varies
with the form of the supplied information, its amount and
its timing. Frequent ways instructors give information are by
showing videotapes of a person performing the task, directly
demonstrating the task, physically guiding a person through a
task, and providing verbal instructions. With the right guidance
at the right time the student can adjust behavior both during
and after a learning session until the desired motion or state
is attained.

Students use live or video demonstration to observe strate-
gies, spatial or temporal information, and as a reference
of correctness for their own attempts at the behavior [9].
Some researchers have shown that mistakes may be more
instrumental in facilitating learning than perfect performances,
which by themselves are not giving the type of information
the learner needs.

Several studies, however, found that showing videotapes
alone, which is similar to direct demonstration, often did not
improve motor learning [9]. It was postulated that too much
information is available, particularly for complex tasks, and
the viewer does not know which details are important to the
outcome. In one study, showing a videotape by itself was
even shown to hinder learning. On the other hand, as early as
1952, verbal instructions were shown to have a lasting effect
on learning and performance, although verbal instructions
are more useful when used in conjunction with other input,
particularly demonstration [9].

Verbal instructions can communicate information includ-
ing focus, specific stance, or strategies for error correction.
Some verbal information takes the form of specific kinematic
feedback, such as “bend your knees”. Besides patterns of
coordination, kinematic feedback can also be position, ve-
locity, and acceleration information. Expert instructors play
a valuable role in being able to observe, identify and correct
kinematic errors by giving verbal descriptions to the student.
The usefulness of kinematic information is supported by
studies giving evidence of kinematic trajectory plans in the
parietal cortex [10]; the presence of inverse dynamics models
in the cerebellum [11]; and motor equivalence where different
limbs are shown to produce kinematically similar patterns,
despite having such different dynamical properties [12], [13].

In the next sections we discuss implementation of coaching
components pulled from these ideas and tied together by an
interface used in directing humanoid behaviors.

III. THE HUMANOID ROBOT COACHING SYSTEM
A. Overview

In our humanoid coaching system the coach, much like a
dance instructor or sports coach, wishes to change a given
behavior to suit a particular end. In order to achieve this,
the coach and humanoid must be able to communicate. The
interface shown here facilitates and coordinates this commu-
nication. Embedded in it are access points for the different
capabilities of the system which incorporate:

¢ vocabulary;

¢ a set of transformation functions;

o the ability to demonstrate a desired behavior, either
through performance or by physically guiding the robot;

o the ability to focus on specific parts of a behavior for
refinement (body and time segmentation);

o the ability to clarify instructions or resolve ambiguities
through a student-coach dialogue.

Each capability is derived from an aspect of human coach-
ing. The vocabulary, for instance, reflects verbal instructions
coaches commonly use to give instructions. These commands
center around kinematic descriptions of motion, such as higher
and bend, used often when teaching motor skills. Movements
are changed by transformation functions (TFs) articulated
by this high-level vocabulary which manipulate appropriate
behavioral parameters to achieve a specific outcome (see
Section III-B for details). New movement acquisition is based
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Fig. 1.

on two widely-used methods: demonstration and guiding.
Focusing on behavioral features relevant to success as defined
by the coach is achieved by selecting specific parts of a
movement, such as arm or leg motion (segmenting in body
space) for coaching. Attention can also be focused on certain
sections of a movement (segmenting in time) by breaking
it into sub-movements. Composition of partial movements
into a complex movement is easily accomplished by joining
segmented sub-movements. Lastly, during human coaching,
students are free to ask for clarification when misunderstand-
ings arise. We emulate this by giving the robot the ability to
initiate a dialogue with the coach to ask for further instructions
when faced with ambiguous or unclear situations.

The interface itself is shown in Fig. 1 and is comprised of

modules representing the different functionalities. They are:

o A classic interface comprised mainly of buttons and
sliders labeled with various coaching commands making
up the explicit coaching vocabulary.

« A simple 2D representation of a robot body allowing the
coach to easily focus changes on any part(s) of the body.

e« A 3D graphics window which allows visualization of
movements on a 3D humanoid to allow quick, intuitive

The four modules of the humanoid robot coaching interface.

segmentation, and real-time 3D visualization of color
markers used in vision-based demonstrations.

e An interactive text-based window to facilitate student-
initiated dialogue between coach and student, and to
provide current state information to the coach on demand.

Information transfer is initiated by using the vocabulary on
the classic interface. We use this type of interface for many
higher-level (verbal”) instructions in order to avoid the pitfalls
of speech processing, such as the need for speaker-specific
training, although the system has also been successfully tested
with speech recognition software.

B. Transformation Functions

At the heart of the system lie transformation functions,
which form the essential mechanism for bringing about
changes in robot behavior. A TF is typically comprised of
a label, which is the coaching command that invokes it, and a
set of criteria that serves to define the high level command in
terms of low level behavioral criteria. Label and criteria are
wrapped together in a function that ultimately effects changes
to the appropriate behavioral parameters in accordance with
the TF’s definition.
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C. The Role of World and Self Knowledge

To set the criteria for TFs, the system needs access to certain
types of knowledge relevant to the behavior domain. For the
movement domain the robot needs an understanding of the
relationship between its body and the world. In people, body
and world knowledge for movement is gained from childhood
on, beginning when children explore the space around them
with seemingly random gestures. In our system we seek a
minimal knowledge representation that affords the robot the
same type of understanding.

We designate world and body (self) reference frames with
a known correspondence, each comprised of a 3D Cartesian
system where the axes correspond to left, up and front. At any
time the robot is able to map its own local orientation to the
world reference frame. A TF is defined as relative to either
the world or body frame. For example, the notion of front”
and “back” embedded in the further TF is always relative to
the robot body frame, so the current robot body orientation is
used no matter where the robot is in the world, while higher
is always relative to the world frame. Taken together, the
TFs begin to define a type of domain-specific dictionary of
behavioral knowledge.

Body knowledge in the humanoid coaching system is also
represented in the form of kinematic chains whose connectivity
is known to the robot. In our system, the interdependencies
of the human skeleton are represented as 6 hierarchically
dependent kinematic chains. By exploring the relationship of
the robot body joints to the appropriate Cartesian reference
frame, the robot can determine which joints may be useful
in effecting change for a specified direction. For example,
the robot may find that a higher arm movement could be
accomplished by extending the arm front and up (shoulder
flexion/extension) or to the side and up (abduction/adduction),
or some combination of the two. Additionally, knowing its
body connectivity, a robot may suggest using the torso to effect
changes in an arm posture. In determining which changes
to make, the robot engages in a dialog with the coach (see
the appendix) resulting in the final set of relevant DOFs
used to effect the change. During this exchange, the robot
can demonstrate the effect of the candidate DOFs to provide
immediate feedback to the coach.

DOF exploration starts with the body parts selected by
clicking in the 2D window, which graphically represents body
part vocabulary (right arm, head, etc.) in a simplified robot
shape. Body part(s) are highlighted (in red) when active, and
each part corresponds to a set of candidate DOFs that are con-
sidered in effecting subsequent changes. This selection process
works in conjunction with the Perform ACTIVE and Perform
ALL options on the classic interface which direct the robot
to perform changes using only the selected DOFs, or with all
DOFs involved in the movement. With this mechanism, the
coach has the option of seeing the effect of partial changes on
the entire movement while refining specific pieces.

To determine appropriate DOFs, the robot makes use of
forward kinematics where each joint change is related to a

change in the 3D positions of virtual points attached to the
relevant body part. Our robot is comprised of revolute joints
modeled with twists [14] as in our previous work [15], [16],
[17]. Each candidate joint is moved by respectively increasing
and decreasing its value, and the change in 3D point position
attached to the body part moved by the joint is then compared
to criteria for the TF, where the position of a point after
rotation is given by

Py =9g(R.d) exp(&0) - P, (1)

where P, and Py, are the initial and final 3D positions
respectively of a point attached to the body part given in the
body coordinate system, g(R,d) is the homogeneous matrix
representing the body orientation and position in the world
coordinate frame, and exp(@0) is the exponential that maps
a rotation of angle ¢ radians about w, the unit vector in the
direction of the joint axis, to the corresponding rotation matrix.
(Note that for the special case of pure rotation, the exponential
coordinates of rotation, § and w, suffice in the place of the twist
coordinates, and the exponential mapping can be efficiently
calculated by Rodrigues’ formula.)

When both rotational directions match the TF criteria, the
solution prefers to continue in the current direction of motion,
but the final decision is left to the coach.

For world-based criteria like higher, it is important to test
DOFs with respect to the robot’s world position and orientation
since changes therein can affect the solution set of DOFs.
(Consider making a higher arm movement lying down versus
standing, for example.)

D. Initial Behavior Acquisition

Another important use of domain knowledge is found in
imitation, where the coach demonstrates movements that can
be understood and reproduced by the robot during interactive
coaching sessions. It is not surprising that imitation plays
a key role in coaching motor skills, as it is a successful
and fundamental strategy used for human learning [18], and
has inspired much work in the robotics and virtual human
communities [19], [20], [21].

To solve direct imitation, the robot already has crucial
information: its position and orientation with respect to the
world reference frame, and an understanding of its own body
configuration.

Our approach, described in [15], [16], [17] relates the
coach’s kinematics to the robot’s kinematics automatically, and
acquires the motions in the robot joint space by matching the
position of markers in Cartesian world space attached to the
coach’s body to the motion of corresponding virtual markers
attached to the robot body and measured in body space.

In the past we have used a commercial optical motion
capture system with active markers and trailing wires to track
points on the body, but for coaching we usually use our own
less intrusive (wireless) color tracking system, which tracks
color blobs attached to clothing (Fig. 2). During coaching,
imitation occurs in real time or immediately following a
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demonstration, and the solution is constrained to the robot
joint limits.

In the coaching system, the Imitate command is used with
the 3D window to allow real-time display of 3D vision markers
attached to the coach, and to visualize solution markers as the
transition from Cartesian space to joint angles is calculated.
This is important in ensuring good tracking information is
maintained, a reasonable solution ensues, and problems such
as occlusion can be quickly identified and monitored.

Another common method of seeding behaviors is physically
guiding a robot through a motion. This is invoked with the
Pose command and is accomplished by lowering gains on
the robot and directly capturing joint angles while the coach
physically guides the robot through a motion.

The last demonstration-based command, Morelike, is in-
tended to make a movement similar to the movement being
shown. This is achieved by performing a weighted average on
joint angles for each DOF used in the demonstration and in
the current movement to drive them toward the demonstration.

E. Descriptions of Transformation Functions

Due to space constraints we present only brief descriptions
of the remaining transformation functions, omitting most of
the mathematical details. TFs were implemented using tools
from various areas including digital signal processing, spline
analysis, approximation theory, and computer vision.

We chose Cartesian and joint angle space to express move-
ment information because they reflect common spaces for de-
scribing movements in human coaching, and lend themselves
easily to change within this paradigm. Movements, M, are
represented either by a sequence of points P; in time, splines
or radial basis functions, and transformation functions act on
these representations.

At the top left of the classic interface, we find motion
descriptors and associated sliders, which control the mag-
nitude of the desired changes bounded by the robot’s ca-
pabilities. faster changes the frequency of the movement
under consideration, where robot velocity capabilities limit
desired frequencies if necessary. smoother requires less sharp
changes in position with respect to time. This is achieved
using a moving average filter which smooths a curve in joint
space representing the active motion segment (See Fig. 3).
The slider value influences the filter window size. bigger
corresponds to an increase in amplitude of the movement range
measured in joint space and is achieved using a global scaling
algorithm [22]. higher causes an increase along the vertical
axis of the world Cartesian system, and is accomplished by
moving the maximum (or minimum) of the current trajectory
toward the robot’s maximum joint position with a blending
function. further directs the motion either further left or right,
or front or back with respect to the robot body. bend bends
a part of the body (e.g..elbow, knee or waist) by increasing
the appropriate joint angle over the movement segment under
consideration. turn orients the body (here, the torso and head)
right or left relative to body space, or toward an object in its
surroundings.

Next we consider the time segmentation commands SEG-
MENT, JOIN Ends, and JOIN Concurrent that allow the
coach to split a movement into sub-movements or join two
movements together. The coach can visualize a movement
in the 3D humanoid window to quickly select the beginning
and end of a segment using the SEGMENT, Mark Start and
Mark End buttons. Once a movement segment is identified,
instructions from the coach will affect only this segment until
segmentation is turned off.

In the case of JOIN Ends, the end of one movement is joined
to the beginning of the second movement. When the two joined
movements have different frequencies, relative frequencies are
preserved by re-sampling the slower segment represented by
splines at the higher frequency. JOIN Concurrent aligns the
start of two segments and merges them into one. This action
is intended to join movements with different DOFs (legs plus
arms, for example), allowing the coach to create complex
movements from simpler ones. The buttons Move I, Move
2 and Move 3 allow the coach to switch between movements
and select movements to be joined.

When movement segments are joined care is taken to
smoothly blend the end and start of adjacent segments to
avoid sharp discontinuities in the motion. In all cases the
robot’s joint limits (position and velocity) act as constraints
during modifications, and joint velocities and accelerations are
computed by finite differencing after position changes.

Also on the interface are the object interaction commands
Grip/Release and External Goal. The first allows the coach
to tell the robot when to grip or release objects in its hand,
while the second tells the robot that the current behavior is
associated with an external object found in its environs.

The remaining commands are meta-commands which con-
trol the flow of the overall coaching session (GET MOVE, GO,
STOP, etc.); or housekeeping commands such as Relax, which
resets the robot posture to reasonable values.

IV. EXPERIMENTS AND RESULTS

Our previous work showed the feasibility of using real-time
full-body imitation for movement acquisition [15], [16], [17].
Here we discuss our work on coaching the robot to throw
and catch a ball where our student is a 30 DOF humanoid
robot [23] shown in Fig. 5. The gross movement for throwing
was acquired from direct demonstration using computer vision
(see Fig. 2). The original trajectory acquired from the vision
data, shown in Fig. 3, was too noisy for the robot to properly
execute. So our coaching sequence was as follows:

e acquire a set of throwing movements using real-time

demonstration;

« select one of the movements and use SEGMENT to extract

the relevant part of the trajectory for the desired throw;

« smooth the movement several times, each time acting on

the previous results with smoother (Fig. 3).
With an acceptable throwing movement, we could now focus
on coaching the robot to throw the ball toward the basket. To
do this we

« increase the velocity and acceleration with faster
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Fig. 2. The initial throwing behavior was captured and processed in real time
using color markers attached to the body and computer vision techniques.

o change the course of the trajectory with higher (Fig. 4)
to extend the length of the throw,
« use release to specify the exact timing for the release.

During the coaching session, the robot demonstrated how
higher can be accomplished using a variety of DOFs, and let
the coach select the appropriate DOFs (shoulder and elbow
flexion/extension) to make the new movement. After each
refinement, we (the coaches) watched the robot to evaluate its
performance, and then gave successive instructions based on
what we saw. Throwing at this point was much improved, but
still not satisfactory. This led us to constrain the body space
for the movement from DOFs originally used in the movement
to the DOFs most relevant for successful robot throwing until
throwing was successful.

We then moved the basket, and again coached the robot
until it could throw successfully to the new location. In
the second coaching sequence, further was instrumental in
directing the movement toward the robot’s right, particularly
for the robot torso, as the new target was further to the
right. It is important to point out that the acquisition of
this behavior was accomplished without any programming
and without the input of accurate parameters like velocities
and accelerations. The initial trajectories were acquired by
observation and then modified using qualitative higher-level
instructions. Fig. 5 shows a sequence of postures from a
coached throwing movement.

In our catching experiments, we used coaching to improve
the performance for an existing catching behavior [24]. In this
case we used the transformation function higher to change the
height where the robot catches the ball. This parameter had
an effect on the time it took to catch the ball, with lower
catches affording more time to plan and execute an intercept
motion. GO was used to specify when to begin prediction of
the ball’s flight. For different types of ball trajectories, different
parameters led to successful catching. Our system supports
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permanently associating the relevant behavior parameters to
the movement primitives and thus expanding the knowledge
base of the robot.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The presented system explores a new way to intuitively
create behaviors for complex humanoid robots. Currently,
much time is spent by specialists in creating each new
behavior. Our intent is to introduce other methods with the
potential to improve the time and ease of creating behaviors.
Efficiency is often facilitated by intuitive solutions, as they
are easy to understand and require less training to use. As
we examined strategies people use to acquire new skills, we
were inspired by coaching’s proven merits in accelerating
human skill acquisition. In addition, and perhaps because of
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Fig. 5.

its success in accelerating learning, coaching is a paradigm
familiar on some level to most people. It is a special case of
a more general teacher-student relationship that we meet from
our infancy forward.

Because of this, our coaching system offers a familiar
setting to most people for interacting with and directing the
behavior of a complex humanoid robot where human-robot
communication takes the form of coach’s demonstrations and
high-level qualitative instructions. This familiarity allowed
us to create a “walk up and use” type of system, where,
unlike many motion editing systems, little previous training
is needed, and, unlike most current robot control schemes,
non-specialists can participate in implementing complex robot
behaviors such as throwing a ball in a basket. In doing so
we do not obviate the need for specialists to create low-level
algorithms for robot control. Instead, we look at the potential
role of introducing the advantages of interactive high-level
instruction and interactive goal specification used often by
people in improving the overall efficiency of creating new
robot behaviors. Our approach brings a collaborative nature
of problem solving to the domain, where the intent is for
widespread availability, ease of use, and the ensuing behavioral
flexibility and customization these methods make possible.

Consistent with these goals, we wish to develop new
methods for adding transformation functions to the system.
The functions described here represent examples of domain-
specific transactions related to the language of motion, but are
not meant to be an exhaustive list. At present, more transfor-
mations can be added as needed by traditional programming
methods. However, it would be more suitable and interesting

Postures from a sequence of coached throwing movements.

to develop a mechanism for learning new transformations and
attaching them to a particular label without the need for such
programming. We will work on this in the future.

VI. APPENDIX

The following exchange shows an excerpt from an
interaction between the robot and coach during a higher
command. The position of a virtual point on the upper arm at
its current position and after a positive and negative rotation
from the current position is shown. An increase in the second
(y) dimension corresponds to an increase along the vertical
world axis, the criteria for higher. The main points of the
robot’s communication to the coach are shown in bold.
The coach’s responses are shown in italics. The robot first
checks all active DOFs (those corresponding to body parts
selected in the 2D window, here the left upper arm), and then
checks any connected parts (here the torso) whether they
are active or not to suggest additional possibilities to the coach.

HIGHER requested.
....checking right shoulder

Potential candidates to help with UP for this part:

DOF Status:

...shoulder flexion/extension Active (rsfe)
...shoulder abduction/adduction Active (rsaa)
...shoulder rotation Active (rshr)

I could also check:

....torso rotation Not Active (btr)
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....torso abduction/adduction Not Active (btaa)

....torso flexion/extension

Not Active (btfe)

Cartesian frame changes:

X

y z

testing dof shoulder flexion/extension (rsfe)

-10.296700 4.763384 2.019819 (starting position)
-10.296700 11.492188 5.085141 (positive rotation)
-10.296700 3.356163 -1.992737 (negative rotation)

testing dof shoulder adduction/abduction (rsaa)
-11.976195 4.334291 -2.170500
-10.514429 3.448190 -2.170500
-14.950410 12.791493 -2.170500

testing dof shoulder rotation (rhr)
-10.179647 3.349600 -1.507159
-9.144885 3.349600 -4.726161
-8.644364 3.349600 0.327433

Up:
rsfe winner:

Checking displacement for: y
y displacement: 6.7288

rsaa winner: -y displacement: 8.4572
rhr NO winner: displacement: 0.0000

Can change by using shoulder flex/ext.
Use it?(yes or no)?

Coach: yes

Can change by using shoulder abd/add.
Use it?(yes or no)?

Coach: yes

Finished with right shoulder. Testing torso next...
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