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Abstract— The advances in humanoid robots in recent years
have given researchers new opportunities to study and create
algorithms for generating humanoid behaviors. Not surprisingly,
most approaches for creating or modifying behaviors for complex
humanoids require specialized knowledge and a large amount of
work. Our aim is to provide an alternative, intuitive way to
program humanoid behavior. To do this, we examine human-
to-human skill transfer, specifically coaching, and adapt it to
the humanoid setting. We enable a real-time scenario where a
person, acting as a coach, interactively directs humanoid behavior
to a desired outcome. This tightly coupled interaction between a
person and a humanoid allows efficient, directed learning of new
behaviors, where behavior characteristics can be modified on-
demand. Communication is realized through demonstration and a
coaching vocabulary, and changes are effected by transformation
functions acting in the behavior domain.

I. INTRODUCTION AND RELATED WORK

In film and literature we often see people interacting with

robots just as they do with other people: for example, they use

natural communication such as speech and gesture to direct

robots. In this fictional world, even people who are not robot

experts can control complex machines including humanoids

with ease. However, in today’s reality creating behaviors for

humanoid robots remains a task for specialists, where commu-

nication of behavior details is often time-consuming and takes

place largely through the mechanisms of programming.

One way we can begin to address this disconnect between

imagined possibilities and current reality is by focusing on

paradigms which afford more intuitive methods for creat-

ing robot behaviors. Human-to-human skill transfer is an

especially interesting model for building robot behaviors, as,

besides efficiency, it offers a familiar context to people dealing

with humanoids: rather than learning special skills, people can

bring their own knowledge from interacting with each other

directly into the humanoid domain. In this work we develop an

approach to generating robot behavior modeled on a particular

type of skill transfer: coaching, where a robot acquires new

skills with guidance from a human coach. For this work, we

explore the specific behavioral domain of movement. Where

possible, we emulate the efficiency of human skill transfer,

and because of the familiar, high-level control afforded by

coaching we enable non-specialists to participate in creating

robot behaviors.

Other robotics researchers inspired by coaching include

Nakatani and co-authors [1], who use coaching to aid in

balance and walking controller design for a biped robot. Their

experiments nicely demonstrate the efficiency gains of intro-

ducing intuitive human instruction into the controller design

loop, and although their solution is directed toward specialists,

the authors encourage creation of adaptable interfaces to allow

non-specialists a role in such control. Our approach is more

general purpose, targeting trajectory-based movement acquisi-

tion and subsequent refinement, and provides mechanisms for

novel behavior acquisition and an interface with affordances

suitable to specialists and non-specialists alike.

In [2] robot coaching is used in a teaching scheme for a

mobile robot where the emphasis is on learning representations

for high level tasks rather than on motor skill acquisition. The

coaching component, like our system, uses both demonstration

and verbal input to direct a robot, although demonstration

in [2] is limited to recognizing known primitives, and new

behaviors are limited to combinations of these primitives.

In interactive evolutionary computation (IEC), human eval-

uation is used in optimizations as fitness functions [3], and

although especially suited to topics like music retrieval where

subjective evaluation is critical, IEC has proven useful in

a number of fields including robotics [4]. It differs from

coaching, however, in that evaluations usually take the form

of selecting preferences from a range of current possibilities,

while in coaching specific feedback about how to improve a

performance is given.

Motion editors have also been used to create new robot [5]

and virtual human behaviors [6], [7], [8]. In [5] Kuroki and

colleagues present a motion editor specifically designed for

a small biped robot using the graphical tools common in

motion editors such as inverse and forward kinematics modes,

pose control, pose interpolation, and blending functions. Our
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approach differs from this and from most motion editors

from the graphics community in the way the user interacts

with the robot: our human-robot communication takes the

form of a coach’s demonstrations and high-level qualitative

instructions, while motion editors offer powerful but less

intuitive motion editing paradigms requiring more training to

master. In addition, our system keeps live robot performance

in the loop, allowing for timely evaluation by the coach.

In the next sections we discuss the role of a coach in motor

skill acquisition, followed by our adaptation and implementa-

tion of useful coaching formalisms comprising our humanoid

coaching system, including domain-specific vocabulary, trans-

formation functions, modes of demonstration, and mechanisms

for focusing student attention in both time and body space. We

then discuss our experiments coaching a robot in catching,

and in throwing a ball into a basket. All exchanges occur in

a real-time interactive setup that preserves the iterative nature

of coaching and the tight coupling among effort, evaluation

and guidance.

II. THE ROLE OF A COACH IN HUMAN SKILL TRANSFER

In building our humanoid coaching system, we first studied

human coaching, with particular emphasis on the role of the

coach in teaching motor skills. In general, a coach is an expert

whose job is to improve the performance of a student. This

means providing instructions which are incorporated into the

student’s learning sessions to produce a successful outcome.

Coaching, being a well-established field, offers us a number

of formalisms for teaching new skills. These include acquiring

new motor knowledge; focusing attention on relevant task

features to improve learning of critical task aspects; assigning

priorities among goals; giving specific feedback to improve the

performance; giving a strategy for correction; and helping to

iteratively define the characteristics of a successful outcome.

These coaching methods imply a tightly coupled interaction

between coach and student where close observation of student

performance is followed by feedback or further instructions

from the coach.

The role and usefulness of an expert to guide a student has

been well-studied in humans. Performance and learning varies

with the form of the supplied information, its amount and

its timing. Frequent ways instructors give information are by

showing videotapes of a person performing the task, directly

demonstrating the task, physically guiding a person through a

task, and providing verbal instructions. With the right guidance

at the right time the student can adjust behavior both during

and after a learning session until the desired motion or state

is attained.

Students use live or video demonstration to observe strate-

gies, spatial or temporal information, and as a reference

of correctness for their own attempts at the behavior [9].

Some researchers have shown that mistakes may be more

instrumental in facilitating learning than perfect performances,

which by themselves are not giving the type of information

the learner needs.

Several studies, however, found that showing videotapes

alone, which is similar to direct demonstration, often did not

improve motor learning [9]. It was postulated that too much

information is available, particularly for complex tasks, and

the viewer does not know which details are important to the

outcome. In one study, showing a videotape by itself was

even shown to hinder learning. On the other hand, as early as

1952, verbal instructions were shown to have a lasting effect

on learning and performance, although verbal instructions

are more useful when used in conjunction with other input,

particularly demonstration [9].

Verbal instructions can communicate information includ-

ing focus, specific stance, or strategies for error correction.

Some verbal information takes the form of specific kinematic

feedback, such as ”bend your knees”. Besides patterns of

coordination, kinematic feedback can also be position, ve-

locity, and acceleration information. Expert instructors play

a valuable role in being able to observe, identify and correct

kinematic errors by giving verbal descriptions to the student.

The usefulness of kinematic information is supported by

studies giving evidence of kinematic trajectory plans in the

parietal cortex [10]; the presence of inverse dynamics models

in the cerebellum [11]; and motor equivalence where different

limbs are shown to produce kinematically similar patterns,

despite having such different dynamical properties [12], [13].

In the next sections we discuss implementation of coaching

components pulled from these ideas and tied together by an

interface used in directing humanoid behaviors.

III. THE HUMANOID ROBOT COACHING SYSTEM

A. Overview

In our humanoid coaching system the coach, much like a

dance instructor or sports coach, wishes to change a given

behavior to suit a particular end. In order to achieve this,

the coach and humanoid must be able to communicate. The

interface shown here facilitates and coordinates this commu-

nication. Embedded in it are access points for the different

capabilities of the system which incorporate:

• vocabulary;

• a set of transformation functions;

• the ability to demonstrate a desired behavior, either

through performance or by physically guiding the robot;

• the ability to focus on specific parts of a behavior for

refinement (body and time segmentation);

• the ability to clarify instructions or resolve ambiguities

through a student-coach dialogue.

Each capability is derived from an aspect of human coach-

ing. The vocabulary, for instance, reflects verbal instructions

coaches commonly use to give instructions. These commands

center around kinematic descriptions of motion, such as higher
and bend, used often when teaching motor skills. Movements

are changed by transformation functions (TFs) articulated

by this high-level vocabulary which manipulate appropriate

behavioral parameters to achieve a specific outcome (see

Section III-B for details). New movement acquisition is based

568



Fig. 1. The four modules of the humanoid robot coaching interface.

on two widely-used methods: demonstration and guiding.

Focusing on behavioral features relevant to success as defined

by the coach is achieved by selecting specific parts of a

movement, such as arm or leg motion (segmenting in body

space) for coaching. Attention can also be focused on certain

sections of a movement (segmenting in time) by breaking

it into sub-movements. Composition of partial movements

into a complex movement is easily accomplished by joining

segmented sub-movements. Lastly, during human coaching,

students are free to ask for clarification when misunderstand-

ings arise. We emulate this by giving the robot the ability to

initiate a dialogue with the coach to ask for further instructions

when faced with ambiguous or unclear situations.

The interface itself is shown in Fig. 1 and is comprised of

modules representing the different functionalities. They are:

• A classic interface comprised mainly of buttons and

sliders labeled with various coaching commands making

up the explicit coaching vocabulary.

• A simple 2D representation of a robot body allowing the

coach to easily focus changes on any part(s) of the body.

• A 3D graphics window which allows visualization of

movements on a 3D humanoid to allow quick, intuitive

segmentation, and real-time 3D visualization of color

markers used in vision-based demonstrations.

• An interactive text-based window to facilitate student-

initiated dialogue between coach and student, and to

provide current state information to the coach on demand.

Information transfer is initiated by using the vocabulary on

the classic interface. We use this type of interface for many

higher-level (”verbal”) instructions in order to avoid the pitfalls

of speech processing, such as the need for speaker-specific

training, although the system has also been successfully tested

with speech recognition software.

B. Transformation Functions

At the heart of the system lie transformation functions,

which form the essential mechanism for bringing about

changes in robot behavior. A TF is typically comprised of

a label, which is the coaching command that invokes it, and a

set of criteria that serves to define the high level command in

terms of low level behavioral criteria. Label and criteria are

wrapped together in a function that ultimately effects changes

to the appropriate behavioral parameters in accordance with

the TF’s definition.

569



C. The Role of World and Self Knowledge

To set the criteria for TFs, the system needs access to certain

types of knowledge relevant to the behavior domain. For the

movement domain the robot needs an understanding of the

relationship between its body and the world. In people, body

and world knowledge for movement is gained from childhood

on, beginning when children explore the space around them

with seemingly random gestures. In our system we seek a

minimal knowledge representation that affords the robot the

same type of understanding.

We designate world and body (self) reference frames with

a known correspondence, each comprised of a 3D Cartesian

system where the axes correspond to left, up and front. At any

time the robot is able to map its own local orientation to the

world reference frame. A TF is defined as relative to either

the world or body frame. For example, the notion of ”front”

and ”back” embedded in the further TF is always relative to

the robot body frame, so the current robot body orientation is

used no matter where the robot is in the world, while higher
is always relative to the world frame. Taken together, the

TFs begin to define a type of domain-specific dictionary of

behavioral knowledge.

Body knowledge in the humanoid coaching system is also

represented in the form of kinematic chains whose connectivity

is known to the robot. In our system, the interdependencies

of the human skeleton are represented as 6 hierarchically

dependent kinematic chains. By exploring the relationship of

the robot body joints to the appropriate Cartesian reference

frame, the robot can determine which joints may be useful

in effecting change for a specified direction. For example,

the robot may find that a higher arm movement could be

accomplished by extending the arm front and up (shoulder

flexion/extension) or to the side and up (abduction/adduction),

or some combination of the two. Additionally, knowing its

body connectivity, a robot may suggest using the torso to effect

changes in an arm posture. In determining which changes

to make, the robot engages in a dialog with the coach (see

the appendix) resulting in the final set of relevant DOFs

used to effect the change. During this exchange, the robot

can demonstrate the effect of the candidate DOFs to provide

immediate feedback to the coach.

DOF exploration starts with the body parts selected by

clicking in the 2D window, which graphically represents body

part vocabulary (right arm, head, etc.) in a simplified robot

shape. Body part(s) are highlighted (in red) when active, and

each part corresponds to a set of candidate DOFs that are con-

sidered in effecting subsequent changes. This selection process

works in conjunction with the Perform ACTIVE and Perform
ALL options on the classic interface which direct the robot

to perform changes using only the selected DOFs, or with all

DOFs involved in the movement. With this mechanism, the

coach has the option of seeing the effect of partial changes on

the entire movement while refining specific pieces.

To determine appropriate DOFs, the robot makes use of

forward kinematics where each joint change is related to a

change in the 3D positions of virtual points attached to the

relevant body part. Our robot is comprised of revolute joints

modeled with twists [14] as in our previous work [15], [16],

[17]. Each candidate joint is moved by respectively increasing

and decreasing its value, and the change in 3D point position

attached to the body part moved by the joint is then compared

to criteria for the TF, where the position of a point after

rotation is given by

Pt+1 = g(R,d) · exp(ω̂θ) · Pt (1)

where Pt and Pt+1 are the initial and final 3D positions

respectively of a point attached to the body part given in the

body coordinate system, g(R,d) is the homogeneous matrix

representing the body orientation and position in the world

coordinate frame, and exp(ω̂θ) is the exponential that maps

a rotation of angle θ radians about ω, the unit vector in the

direction of the joint axis, to the corresponding rotation matrix.

(Note that for the special case of pure rotation, the exponential

coordinates of rotation, θ and ω, suffice in the place of the twist

coordinates, and the exponential mapping can be efficiently

calculated by Rodrigues’ formula.)

When both rotational directions match the TF criteria, the

solution prefers to continue in the current direction of motion,

but the final decision is left to the coach.

For world-based criteria like higher, it is important to test

DOFs with respect to the robot’s world position and orientation

since changes therein can affect the solution set of DOFs.

(Consider making a higher arm movement lying down versus

standing, for example.)

D. Initial Behavior Acquisition

Another important use of domain knowledge is found in

imitation, where the coach demonstrates movements that can

be understood and reproduced by the robot during interactive

coaching sessions. It is not surprising that imitation plays

a key role in coaching motor skills, as it is a successful

and fundamental strategy used for human learning [18], and

has inspired much work in the robotics and virtual human

communities [19], [20], [21].

To solve direct imitation, the robot already has crucial

information: its position and orientation with respect to the

world reference frame, and an understanding of its own body

configuration.

Our approach, described in [15], [16], [17] relates the

coach’s kinematics to the robot’s kinematics automatically, and

acquires the motions in the robot joint space by matching the

position of markers in Cartesian world space attached to the

coach’s body to the motion of corresponding virtual markers

attached to the robot body and measured in body space.

In the past we have used a commercial optical motion

capture system with active markers and trailing wires to track

points on the body, but for coaching we usually use our own

less intrusive (wireless) color tracking system, which tracks

color blobs attached to clothing (Fig. 2). During coaching,

imitation occurs in real time or immediately following a
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demonstration, and the solution is constrained to the robot

joint limits.

In the coaching system, the Imitate command is used with

the 3D window to allow real-time display of 3D vision markers

attached to the coach, and to visualize solution markers as the

transition from Cartesian space to joint angles is calculated.

This is important in ensuring good tracking information is

maintained, a reasonable solution ensues, and problems such

as occlusion can be quickly identified and monitored.

Another common method of seeding behaviors is physically

guiding a robot through a motion. This is invoked with the

Pose command and is accomplished by lowering gains on

the robot and directly capturing joint angles while the coach

physically guides the robot through a motion.

The last demonstration-based command, Morelike, is in-

tended to make a movement similar to the movement being

shown. This is achieved by performing a weighted average on

joint angles for each DOF used in the demonstration and in

the current movement to drive them toward the demonstration.

E. Descriptions of Transformation Functions

Due to space constraints we present only brief descriptions

of the remaining transformation functions, omitting most of

the mathematical details. TFs were implemented using tools

from various areas including digital signal processing, spline

analysis, approximation theory, and computer vision.

We chose Cartesian and joint angle space to express move-

ment information because they reflect common spaces for de-

scribing movements in human coaching, and lend themselves

easily to change within this paradigm. Movements, M , are

represented either by a sequence of points Pt in time, splines

or radial basis functions, and transformation functions act on

these representations.

At the top left of the classic interface, we find motion

descriptors and associated sliders, which control the mag-

nitude of the desired changes bounded by the robot’s ca-

pabilities. faster changes the frequency of the movement

under consideration, where robot velocity capabilities limit

desired frequencies if necessary. smoother requires less sharp

changes in position with respect to time. This is achieved

using a moving average filter which smooths a curve in joint

space representing the active motion segment (See Fig. 3).

The slider value influences the filter window size. bigger
corresponds to an increase in amplitude of the movement range

measured in joint space and is achieved using a global scaling

algorithm [22]. higher causes an increase along the vertical

axis of the world Cartesian system, and is accomplished by

moving the maximum (or minimum) of the current trajectory

toward the robot’s maximum joint position with a blending

function. further directs the motion either further left or right,

or front or back with respect to the robot body. bend bends

a part of the body (e.g.,elbow, knee or waist) by increasing

the appropriate joint angle over the movement segment under

consideration. turn orients the body (here, the torso and head)

right or left relative to body space, or toward an object in its

surroundings.

Next we consider the time segmentation commands SEG-
MENT, JOIN Ends, and JOIN Concurrent that allow the

coach to split a movement into sub-movements or join two

movements together. The coach can visualize a movement

in the 3D humanoid window to quickly select the beginning

and end of a segment using the SEGMENT, Mark Start and

Mark End buttons. Once a movement segment is identified,

instructions from the coach will affect only this segment until

segmentation is turned off.

In the case of JOIN Ends, the end of one movement is joined

to the beginning of the second movement. When the two joined

movements have different frequencies, relative frequencies are

preserved by re-sampling the slower segment represented by

splines at the higher frequency. JOIN Concurrent aligns the

start of two segments and merges them into one. This action

is intended to join movements with different DOFs (legs plus

arms, for example), allowing the coach to create complex

movements from simpler ones. The buttons Move 1, Move
2 and Move 3 allow the coach to switch between movements

and select movements to be joined.

When movement segments are joined care is taken to

smoothly blend the end and start of adjacent segments to

avoid sharp discontinuities in the motion. In all cases the

robot’s joint limits (position and velocity) act as constraints

during modifications, and joint velocities and accelerations are

computed by finite differencing after position changes.

Also on the interface are the object interaction commands

Grip/Release and External Goal. The first allows the coach

to tell the robot when to grip or release objects in its hand,

while the second tells the robot that the current behavior is

associated with an external object found in its environs.

The remaining commands are meta-commands which con-

trol the flow of the overall coaching session (GET MOVE, GO,

STOP, etc.); or housekeeping commands such as Relax, which

resets the robot posture to reasonable values.

IV. EXPERIMENTS AND RESULTS

Our previous work showed the feasibility of using real-time

full-body imitation for movement acquisition [15], [16], [17].

Here we discuss our work on coaching the robot to throw

and catch a ball where our student is a 30 DOF humanoid

robot [23] shown in Fig. 5. The gross movement for throwing

was acquired from direct demonstration using computer vision

(see Fig. 2). The original trajectory acquired from the vision

data, shown in Fig. 3, was too noisy for the robot to properly

execute. So our coaching sequence was as follows:

• acquire a set of throwing movements using real-time

demonstration;

• select one of the movements and use SEGMENT to extract

the relevant part of the trajectory for the desired throw;

• smooth the movement several times, each time acting on

the previous results with smoother (Fig. 3).

With an acceptable throwing movement, we could now focus

on coaching the robot to throw the ball toward the basket. To

do this we

• increase the velocity and acceleration with faster
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Fig. 2. The initial throwing behavior was captured and processed in real time
using color markers attached to the body and computer vision techniques.

• change the course of the trajectory with higher (Fig. 4)

to extend the length of the throw,

• use release to specify the exact timing for the release.

During the coaching session, the robot demonstrated how

higher can be accomplished using a variety of DOFs, and let

the coach select the appropriate DOFs (shoulder and elbow

flexion/extension) to make the new movement. After each

refinement, we (the coaches) watched the robot to evaluate its

performance, and then gave successive instructions based on

what we saw. Throwing at this point was much improved, but

still not satisfactory. This led us to constrain the body space

for the movement from DOFs originally used in the movement

to the DOFs most relevant for successful robot throwing until

throwing was successful.

We then moved the basket, and again coached the robot

until it could throw successfully to the new location. In

the second coaching sequence, further was instrumental in

directing the movement toward the robot’s right, particularly

for the robot torso, as the new target was further to the

right. It is important to point out that the acquisition of

this behavior was accomplished without any programming

and without the input of accurate parameters like velocities

and accelerations. The initial trajectories were acquired by

observation and then modified using qualitative higher-level

instructions. Fig. 5 shows a sequence of postures from a

coached throwing movement.

In our catching experiments, we used coaching to improve

the performance for an existing catching behavior [24]. In this

case we used the transformation function higher to change the

height where the robot catches the ball. This parameter had

an effect on the time it took to catch the ball, with lower

catches affording more time to plan and execute an intercept

motion. GO was used to specify when to begin prediction of

the ball’s flight. For different types of ball trajectories, different

parameters led to successful catching. Our system supports

Fig. 3. Original (dashed, noisy line) and modified trajectories for the right
shoulder flexion/extension DOF showing modification by two iterations of the
smoother transformation function implemented with a moving average filter.

Fig. 4. Original (dashed line) and modified (solid) trajectories showing
modification by the higher transformation function after using smoother.

permanently associating the relevant behavior parameters to

the movement primitives and thus expanding the knowledge

base of the robot.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The presented system explores a new way to intuitively

create behaviors for complex humanoid robots. Currently,

much time is spent by specialists in creating each new

behavior. Our intent is to introduce other methods with the

potential to improve the time and ease of creating behaviors.

Efficiency is often facilitated by intuitive solutions, as they

are easy to understand and require less training to use. As

we examined strategies people use to acquire new skills, we

were inspired by coaching’s proven merits in accelerating

human skill acquisition. In addition, and perhaps because of

572



Fig. 5. Postures from a sequence of coached throwing movements.

its success in accelerating learning, coaching is a paradigm

familiar on some level to most people. It is a special case of

a more general teacher-student relationship that we meet from

our infancy forward.

Because of this, our coaching system offers a familiar

setting to most people for interacting with and directing the

behavior of a complex humanoid robot where human-robot

communication takes the form of coach’s demonstrations and

high-level qualitative instructions. This familiarity allowed

us to create a ”walk up and use” type of system, where,

unlike many motion editing systems, little previous training

is needed, and, unlike most current robot control schemes,

non-specialists can participate in implementing complex robot

behaviors such as throwing a ball in a basket. In doing so

we do not obviate the need for specialists to create low-level

algorithms for robot control. Instead, we look at the potential

role of introducing the advantages of interactive high-level

instruction and interactive goal specification used often by

people in improving the overall efficiency of creating new

robot behaviors. Our approach brings a collaborative nature

of problem solving to the domain, where the intent is for

widespread availability, ease of use, and the ensuing behavioral

flexibility and customization these methods make possible.

Consistent with these goals, we wish to develop new

methods for adding transformation functions to the system.

The functions described here represent examples of domain-

specific transactions related to the language of motion, but are

not meant to be an exhaustive list. At present, more transfor-

mations can be added as needed by traditional programming

methods. However, it would be more suitable and interesting

to develop a mechanism for learning new transformations and

attaching them to a particular label without the need for such

programming. We will work on this in the future.

VI. APPENDIX

The following exchange shows an excerpt from an

interaction between the robot and coach during a higher
command. The position of a virtual point on the upper arm at

its current position and after a positive and negative rotation

from the current position is shown. An increase in the second

(y) dimension corresponds to an increase along the vertical

world axis, the criteria for higher. The main points of the

robot’s communication to the coach are shown in bold.

The coach’s responses are shown in italics. The robot first

checks all active DOFs (those corresponding to body parts

selected in the 2D window, here the left upper arm), and then

checks any connected parts (here the torso) whether they

are active or not to suggest additional possibilities to the coach.

HIGHER requested.
....checking right shoulder

Potential candidates to help with UP for this part:

DOF Status:

...shoulder flexion/extension Active (rsfe)

...shoulder abduction/adduction Active (rsaa)

...shoulder rotation Active (rshr)

I could also check:
....torso rotation Not Active (btr)
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....torso abduction/adduction Not Active (btaa)

....torso flexion/extension Not Active (btfe)

Cartesian frame changes:
x y z

testing dof shoulder flexion/extension (rsfe)
-10.296700 4.763384 2.019819 (starting position)

-10.296700 11.492188 5.085141 (positive rotation)

-10.296700 3.356163 -1.992737 (negative rotation)

testing dof shoulder adduction/abduction (rsaa)
-11.976195 4.334291 -2.170500

-10.514429 3.448190 -2.170500

-14.950410 12.791493 -2.170500

testing dof shoulder rotation (rhr)
-10.179647 3.349600 -1.507159

-9.144885 3.349600 -4.726161

-8.644364 3.349600 0.327433

Up: Checking displacement for: y
rsfe winner: y displacement: 6.7288

rsaa winner: -y displacement: 8.4572

rhr NO winner: displacement: 0.0000

Can change by using shoulder flex/ext.
Use it?(yes or no)?
Coach: yes
Can change by using shoulder abd/add.
Use it?(yes or no)?
Coach: yes

Finished with right shoulder. Testing torso next...
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