
Synthesizing Goal-Directed Actions from a Library
of Example Movements

Aleš Ude∗†, Marcia Riley¶, Bojan Nemec∗, Andrej Kos∗, Tamim Asfour‡ and Gordon Cheng†§

∗Jožef Stefan Institute, Dept. of Automatics, Biocybernetics and Robotics

Jamova 39, 1000 Ljubljana, Slovenia

†ATR Computational Neuroscience Laboratories, Department of Humanoid Robotics and Computational Neuroscience

2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

‡University of Karlsruhe, Institute of Computer Science and Engineering

c/o Technologiefabrik, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

§Japan Science and Technology Agency, ICORP Computational Brain Project

4-1-8 Honcho, Kawaguchi, Saitama, Japan

¶Georgia Institute of Technology, College of Computing

Atlanta, Georgia 30332–0250, USA

Abstract— We present a new learning framework for syn-
thesizing goal-directed actions from example movements. The
approach is based on the memorization of training data and
locally weighted regression to compute suitable movements for a
large range of situations. The proposed method avoids making
specific assumptions about an adequate representation of the
task. Instead, we use a general representation based on fifth
order splines. The data used for learning comes either from the
observation of events in the Cartesian space or from the actual
movement execution on the robot. Thus it informs us about the
appropriate motion in the example situations. We show that
by applying locally weighted regression to such data, we can
generate actions having proper dynamics to solve the given task.
To test the validity of the approach, we present simulation results
under various conditions as well as experiments on a real robot.

I. INTRODUCTION

Humanoid robotics has dealt with the problem of learning

complex humanoid behaviors for a long time. It was soon real-

ized that to overcome problems arising from high dimensional

and continuous perception-action spaces, it is necessary to

guide the search process, thus effectively reducing the search

space, and also to develop higher-level representations suitable

for faster learning. To achieve these goals, researchers in sen-

sorimotor learning have explored various solutions. Some of

the most notable among those are learning from demonstration

(or imitation learning) and motor primitives.

Building on the large body of work by the computer

graphics community, it has been shown that motion capture

technology can be used to generate complex humanoid robot

motions that may require a great deal of skills and practicing

to be realized, e. g. dancing [11], [18], [19]. Techniques to

adapt the generated movements with respect to various robot

constraints have also been proposed [10], including more com-

plex constraints such as self-collision avoidance and balancing

of a free standing dancing robot [8], [14]. Dynamics filter

that can create a physically consistent motion from motion

capture data has also been proposed [22]. While these works

can overcome the problem of different embodiments of the

robot and the demonstrator, they do not deal with the effects

of motion acting on the external world. Different methods are

needed to adapt the captured motions to the changes in the

external world and synthesize goal-directed actions, such as

in the case of object manipulation tasks.

In tasks involving the manipulation of objects, it is neces-

sary to adapt the observed movements to the current state of

the 3-D world. For any given situation, it is highly unlikely

that an appropriate movement would be observed in advance

and included in the library. While many tasks can be learned

assuming a proper representation for the physics of the task,

such an approach relies on a priori knowledge about the

action and therefore does not solve the complete learning

problem. To avoid specifying the physical model of the task,

Miyamoto et al. [9] based their methodology on programming

by demonstration and derived a representation for optimal tra-

jectories, which they referred to as via-points. They were able

to teach a robotic arm a fairly difficult game of Kendama and

tennis serves. Schaal et al. [5], [17] proposed a more general

nonparametric approach based on nonlinear dynamic systems

as policy primitives. They developed canonical equations for

rhythmic and discrete movements and demonstrated that these

systems can be used to learn tasks such as tennis strokes

and drumming. Hidden Markov models (HMMs) are another

popular methodology to encode and generalize the observed

movements [1], [3], [6]. While techniques that enable the

reproduction of generalized movements from multiple demon-

strations have been proposed, generalization across movements

to attain an external goal of the task is not central to these

works. HMMs, however, can be used effectively for motion

and situation recognition [6] and to determine which control

variables should be imitated and how [3].

978-1-4244-1862-6/07/$25.00 © 2007 IEEE HUMANOIDS’07115

Fig. 1. Human demonstration of the ball throw, unsuccessful direct reproduction on a humanoid robot, and a successful action execution after coaching

The computer graphics community has also studied human

motion synthesis from example movements. The most com-

mon approach is to generalize across a number of movements

by linear interpolation, like e. g. [21]. If done correctly, such an

approach results in physically correct movements under many

circumstances [15]. Rose et al. [13] represent the motions by

B-splines and use radial basis functions to interpolate between

the control points of B-Splines. Automatic re-timing of the

captured movements based on registration curves has also

been considered [7]. Most of the early works dealt with the

intepolation of relatively short movements, but interpolation

of longer action sequences is also possible as shown in [16].

While these works address many problems relevant to the

robotics community, their main aim is to generate realistic

computer animations. Our focus, however, is to show that

movement interpolation can generate actions that can change

the external world in such a way that the goal of an action

is attained. In order words, we focus on the synthesis of

goal-directed actions and how to make action synthesis from

example movements applicable for the implementation on a

real robotic system.

In the following we propose a new movement generalization

methodology based on locally weighted regression [2]. The

goal of an action is used to index into the library of stored

movements. We also briefly deal with different approaches that

can be applied to generate a suitable movement library. We

show both in simulation and on a real robot that the proposed

approach can be used to synthesize goal-directed actions. As a

test example we use the task of throwing a ball into a basket,

which has the advantage that its physics is well understood

and we can thus compare our results with an ideal system.

II. COLLECTING THE EXAMPLE MOVEMENT LIBRARY

As mentioned in the introduction, motion capture has been

used successfully to generate fairly complex movements on a

humanoid robot. However, direct reproduction of movements,

even if it includes the physical constraints of a robot, rarely

results in a successful execution of the task that involves

external goals. In the throwing example of Fig. 1, the direct

reproduction ended up in a throw that missed the basket

(middle row of figures). Moreover, the execution of the

throwing movement was suboptimal in many other ways such

as for example timing of the ball release and smoothness. It

was therefore necessary to develop a methodology to adapt

the initial robot motion. In our previous work, we explored

the coaching paradigm to solve these problems. Coaching

provides a familiar setting to most people for interacting

with and directing the behavior of a complex humanoid robot

where human-robot communication takes the form of coach’s

demonstrations and high-level qualitative instructions. In this

way it is possible to generate throwing movements that result

in successful throws with good dynamical properties, which

are suitable for generalization. See [12] for more details.

There are other ways than coaching to adapt captured move-

ments to attain the goal of the task in a given situation. The via-

point representation based on the forward-inverse relaxation

neural network model (FIRM) [20] is one of them. Via points

are extracted sequentially by taking the first two via-points

to be the end-points of the movement and interpolating the

movement using the minimum principle for the approximated

dynamics model (point mass), which results in a minimum

jerk trajectory (fifth order polynomial). New via-points are

determined by calculating the distance between the observed

and interpolated trajectory and adding the via-points at the

point of the maximum squared error until the error is small

enough. Hovewer, the movement generated by the final set

of via-points still cannot ensure the successful execution of

the task. It was therefore proposed to adapt the trajectory by

moving the via-points until the robot is successful [9]. This is

116

accomplished by constructing a function from via-points to the

task goal and by moving the via-points using a Newton-like

optimization method.

In certain situations, it is well possible that a skilled

engineer would be able to design optimal trajectories for some

situations. The coaching paradigm described above just pro-

vides the technology that enables non-skilled people to design

”good” movements for learning. Thus, all these methods for

trajectories generation can be utilized for the construction of a

library of movements. The method we propose in the following

is independent of the data collection method1.

III. GENERALIZATION ACROSS MOVEMENTS

The data collection mechanisms described in the previous

section provide us with a set of movements M i, i =
1, . . . , NumEx, that were executed by the robot and suc-

ceeded to accomplish the goal of the task in the observed situ-

ations. We denote the goals by qi ∈ R
m, i = 1, . . . , NumEx.

In the case of throwing a ball into a basket, the goals {qi} are

specified by the positions of the basket. Every movement M i

is encoded by a sequence of trajectory points pij at times

tij , j = 1, . . . , ni. We have experimented both with end-

effector trajectories (in this case pij are points in the Cartesian

space) and with robot joint trajectories (in this case pij are

the joint angles stemming from the active degrees of freedom).

Our aim is to develop a method that can compute motions that

attain the goal of the task for any given query point (goal) q.

To find a representation for the desired movements, we

follow [9], [20] and represent the trajectories by fifth order

splines. Due to their local support property, we chose B-splines

[4] to implement the spline functions, which results in the

following representation

M(t) =
∑

k

bkBk(t), (1)

where Bk are the basis functions from the selected B-spline

basis.

A. Determination of Basis B-Spline Functions

We adapted the via-point approach of [9] to find a good

spline basis. Unlike [9], which deals with only one example

movement, we need to consider multiple examples. We there-

fore introduce what we call common knot points. Common

knot points are extracted sequentially as follows:

1) First all trajectories are time-scaled to interval [0, 1].
The duration of every movement Ti is also stored

with each example. Without re-timing it is not pos-

sible to interpolate between the examples. See Sec-

tion III-C for more details on this issue. The initial

knot sequence for the fifth order spline is taken to be

K1 = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}, which results in a

so called clamped spline. Clamped splines can be used to

calculate minimum jerk splines interpolating the desired

position, velocity, and acceleration at the end points (0

1However, a via-point like method is used to obtain a suitable representation
for goal-directed actions.

and 1). The initial spline basis consists of six basis

functions.

2) For every movement M i we determine the best approxi-

mating fifth order spline Sli with basis functions defined

by the current knot sequence Kl.

3) For all configurations (pij , sij), sij = tij/Ti, we

calculate the distance to the generated spline trajectories

elij = ‖pij − Sli(sij)‖. (2)

We select the knot point to be added to the existing knot

sequence at the point of the maximum squared error

elij between the example movements and the generated

spline trajectories. The new knot sequence is given by

Kl+1 = {0, . . . , sij , . . . , 1}. (3)

4) The procedure continues at step 2 (with l ← l +1) until

the difference between the example movements and the

generated spline trajectories becomes sufficiently small.

The above process is similar to the way Miyamoto et al. [9]

determine via-points. Its final result, the knot sequence KL,

is applied to define a spline that we use to synthesize goal-

directed actions.

B. Synthesizing New Actions

Given a goal q, we would like to find movement M(q)
that can attain this goal. Using the above representation we

can write

M(q) =
N∑

k=1

bk(q)Bk, (4)

where N is the number of B-spline basis functions defined by

the knot sequence KL. In computer graphics, new movements

are often synthesized by simply interpolating the splines

approximating the example movements [15]

M =
∑

i

wiM i. (5)

However, if the approximation by splines is not accurate,

such an approach can introduce undesired deformations in the

example movements, which can affect the synthesized actions.

We therefore studied other techniques such as locally weighted
regression [2] to generate movements for any given goal. Our

main motivation is that it is difficult to find global models that

are valid everywhere and that it is therefore better to look for

local models that are correct only in one particular situation,

but are easier to compute. In locally weighted regression, local

models are fit to nearby data. Its application results in the

following optimization problem

M(q) = arg min
b

{C(q)},

C(q) =
NumEx∑

i=1

ni∑
j=1

∥∥∥∥∥
N∑

k=1

bkBk(sij) − pij

∥∥∥∥∥
2

W (di(q,qi)) .

(6)

Here W is the weighting kernel function and di are the

distance functions between the query point and the data points

117

qi. The unknown parameters we minimize over are b =
[bT

1 , . . . , bT
N]T .

Since W (di(q,qi)) does not depend on the B-spline coeffi-

cients bk, the optimization problem (6) is a classic linear least

squares problem. It is, however, very large because it contains

all data points pij describing the example movements. Before

describing how to solve it, we define distance functions di

and the kernel function W. We take the weighted Euclidean

distance for di, i. e.

di(q,qi) =
1
ai
‖q − qi‖, ai > 0. (7)

It is best to select ai so that there is some overlap between

the neighboring query points. One possibility is

ai = 2min
j

‖qi − qj‖ (8)

By selecting ai in this way we ensure that as query points

transition from one data point to another, the generated move-

ments also transition between example movements associated

with the data points.

There are many possibilities to define the weighting function

W [2]. We chose the tricube kernel

W(d) =
{

(1 − |d|3)3 if|d| < 1
0 otherwise (9)

This kernel has finite extent and continuous first and second

derivative. Combined with distance (7), these two functions

determine how much influence each of the example move-

ments M i has. It is easy to see that the influence of each M i

diminishes with the distance of the query point q from the

data point qi. If the data points qi are distributed uniformly

along the coordinate axes, then every new goal directed

movement M(q), q �= qi, will be influenced by 4m example

movements2, where m is the dimension of the query point.

Optimization of criterion (6) is a linear least-squares prob-

lem. Locally weighted regression combined with the local

support of B-spline basis functions make the resulting linear

system that needs to be resolved sparse. Additionally, since

only the weights and not the basis functions depend on the

query point q, the sparse system matrix can be precomputed

in its entirety. We applied the Matlab implementation of sparse

matrix algebra to solve the resulting linear problems, which

enabled us to generate new actions quickly despite the large

number of trajectory points pij . Another advantage of the

proposed method is that there is no need to search for nearby

movments in the database; locally weighted regression and

sparse matrix algebra do this job.

C. Re-Timing of the Generated Actions

To interpolate between example movements, we needed to

first scale the timing of all trajectories to a common interval,

which we chose to be [0, 1]. This scaling, however, causes

the velocities and accelerations of both the example move-

ments and the synthesized actions to be scaled. To synthesize

2Exception are the movements at the edge of the training space.

movements with proper velocities and accelerations – which

is essential to solve dynamic tasks – we need to rescale

the resulting actions back to the original time interval. As

described in Section III-A, the timing of each example motion

M i is scaled by 1/Ti, where Ti is the duration of the example

movement. Hence to re-time the synthesized action, we need

to compute an estimate for the expected time duration T .

For this purpose, we approximate the expected timing by

a multivariate B-spline function ft : R
m → R, which is

estimated by minimizing the following criterion

NumEx∑
i=1

(ft(qi) − Ti)
2
. (10)

In our experiments we defined a B-spline basis by uniformly

subdiving the domain of the goal points qi. A suitable timing

for the synthesized action is then given by

T = ft(q) =
M∑
i=1

aiBi(q). (11)

Finally, the correctly timed trajectories for the synthesized

actions obtained by minimizing criterion (6) can be calculated

by mapping the knot points KL = si to the new knot sequence

K ′
L

K ′
L = {0, . . . , T ∗ si, . . . , T}. (12)

The optimal coefficients bk(q) remain unchanged and the

spline with these coefficients defined on the knot sequence

K ′
L specifies an action with appropriate velocities and accel-

erations.

It should be noted here that uniform scaling might not

be suitable for every task. In some situations it might be

more appropriate to segment the example movements and

apply different scaling factors to different time intervals.

Here matching of key events is crucial for good results [15].

Computer graphics community has proposed some approaches

to automatically resolve this problem [7], [13]. Since the

task considered in this paper does not require nonuniform

scaling, we did not attempt to develop more complex re-timing

methods here.

IV. EXPERIMENTAL RESULTS

We validated our approach both in simulation and on the real

robot. As a test example we considered the task of throwing

a ball into a basket, which has the advantage that it is a

dynamic task, dependent not only on the positional part of

the movement, and that its physics is well understood. This

allows us to compare our results with an ideal system. It can

easily be shown that the trajectory of the ball after the release

is fully specified by the position and velocity at the release

point

x = x0 + v0t cos(α), y = y0 + v0t sin(α) − gt2

2
, (13)

where (x0, y0) is the release point, v0 is the linear velocity of

the ball at release time and α is the initial angle of the throw.

We considered the problem where the target basket is placed

118

in xy-plane. Note that a humanoid robot could normally turn

towards the basket, thus solving this problem allows the robot

to throw the ball to any position in space.

A. Simulation Results

For the interpolation to work, the style of example move-

ments must be similar. Interpolation between movements that

have nothing in common would not results in sensible actions.

To generate examples that can be used for action synthesis,

we used Eq. (13) to design Cartesian space trajectories that

theoretically result in successful throws for a given basket

position. The base of the robot, which was taken to be a seven

degrees of freedom arm, was fixed in space. The designed

trajectories consisted of circular and linear parts. From a given

basket position, we determined a suitable release point and by

specifying the desired angle under which the ball should fall

into a basket (taken to be 60 degrees), a good trajectory for

each situation could be calculated. We distributed the goal

basket positions within a rectangular area of size 4× 2 meter

squares, with the lower left corner positioned at (1.2, 0.1)
meters. The base of the robot was placed at (−0.5, 0.1) meters.

Fig. 2 shows the velocity profiles of the movements generated

by specifying a grid in thin rectangular area with baskets

placed every 0.5 meters (altogether 45 basket positions). We

used inverse kinematics to generate example trajectories in

joint space.

By specifying different grid sizes for training (we took grid

side lenghts of 0.25, 0.5, and 1 meter, which resulted in 15,

45, and 153 example movements within the training area), we

tested how many example movements are necessary to throw

a ball anywhere within the training area with good precision.

Tables I and II show the errors in the synthesized throws. They

were calculated by using Eq. (13) to determine the ball flight

trajectory after release. All values in the tables are given in

centimeters. The density of the training data is specified by

the grid size (rightmost column). Since the error was smaller

away from the edges of the library (see Fig. 3), we estimated

0 200 400 600 800 1000 1200
�1

0

1

2

3

4

5

6

7

8

9

Time (milliseconds)

V
el

oc
iti

es
 (

m
/s

ec
)

Fig. 2. Cartesian velocities of example movements

0.5
1

1.5
2

1
2

3
4

5
0

0.05

0.1

0.15

y position (m)x position (m)

er
ro

r
(m

)

Fig. 3. The throw error. The graph corresponds to the condition of Tab. I
with grid size 50× 50, joint space synthesis. The error is larger at the edges
of the training area where less data is available for synthesis.

the error in the complete training area and in the area reduced

by the side length of the grid along the edges. In Tab. I the

data points pij used in (6) consisted of both positions and ve-

locities3, which were approximated by the spline functions. In

Tab. II the data points pij consisted of positional information

only. To test the method we evaluated the throws by applying

a grid of 2.5×2.5 centimeter squares, which resulted in 13041

test throws for every training condition.

Both tables show that the accuracy of the ball throw

is significantly improved when more data is available. We

achieved average precision between 1 and 2.5 cm for the

two finer grids. Hence, 45 training examples were enough for

an average precision of below 2 cm within the reduced area.

The comparison of Tab. I and II also shows that the explicit

addition of velocity information did not improve the throwing

precision. We believe that the main reason for this is that our

data was simulated at a typical robot servo rate of 500 Hz,

3Formula (6) is valid for positional information only, but extension to
velocities and accelerations is straightforward and does not significantly
change the linear system that needs to be resolved.

0

2

4

6 0
0.5

1
1.5

2
2.5

0.2

0.4

0.6

0.8

1

y position (m)
x position (m)

tim
e

(s
ec

)

Fig. 4. Spline function approximating the release times of the movements
with respect to the basket position

119

TABLE I

ERRORS IN THE SYNTHESIZED THROWS (IN CENTIMETERS). SEE TEXT

FOR THE EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.18 1.52 1.70 1.28 25× 25

Max. error 10.39 5.79 9.63 4.67 25× 25

Average error 2.72 1.75 2.25 1.40 50× 50

Max. error 12.57 7.08 13.79 6.01 50× 50

Average error 10.15 7.03 9.85 6.37 100× 100

Max. error 38.97 15.27 37.71 13.23 100× 100

TABLE II

ERRORS IN THE SYNTHESIZED THROWS WITHOUT INCLUDING

VELOCITIES IN THE DATA (IN CENTIMETERS). SEE TEXT FOR THE

EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.25 1.50 2.25 1.60 25× 25

Max. error 10.03 4.89 9.69 4.58 25× 25

Average error 2.41 1.54 2.43 1.61 50× 50

Max. error 13.35 6.17 13.77 5.91 50× 50

Average error 10.39 6.55 10.23 6.40 100× 100

Max. error 38.31 13.34 37.78 12.94 100× 100

140 150 160 170 180 190 200 210
0

1

2

3

4

5

6

7

8

9

10

Distance (cm)

E
rr

or
 (

cm
)

Fig. 5. Accuracy of the learned throwing action executed by the robot

hence enough data was available to estimate the velocities

from positional information. For sparser data the addition of

velocity and acceleration will become more important.

We applied the proposed approach to the data collected in

both the Cartesian and the joint space. Tab. I and II show that

in most but not all cases the precision was slightly better when

using the Cartesian space data. However, the differences were

so small that we consider both types of data equally suitable.

The improvement with denser training data was much more

significant when moving from the grid size of 1×1 to 0.5×0.5
meter squares than when moving to the grid size of 0.25×0.25.

The main reason was that the estimation of the timing function

ft of Section III-C (see Fig. 4) used the same set of basis

functions to form the approximating spline in all cases. Thus

when the grid size was reduced, the inaccuracies in the timing

function started to dominate and the throwing precision did

not improve any further. This shows the importance of the

proper estimation of timing.

Our results demonstrate that albeit the system was not

provided with the model of the task, it managed to learn

how to throw the ball with high precision using no other

information but the example movements and the associated

basket positions.

0 100 200 300 400 500 600 700
�1.5

�1

�0.5

0

0.5

1

1.5

time (milliseconds)

ve
lo

ci
tie

s
(m

/s
ec

)

Fig. 6. Cartesian velocities of generated robot movements for throws into a
basket positioned at 1.4, 1.45, 1.5, ... 2.1 meters

B. Robot Experiments

We used a humanoid robot arm with seven degrees of free-

dom for our first real-world action synthesis experiments. We

used five training examples (taken at 1.37, 1.63, 1.77, 1.98, and

2.18 meters) to train the throwing behavior along the line from

1.4 to 2.1 meters. Fig. 5 shows the accuracy of the synthesized

throws. The average error was 3.36 centimeters. The training

had to be done in the joint space because the robot can not

follow Cartesian space trajectories with sufficient accuracy.

Also, it is important to use the desired joint trajectories and not

the actual joint trajectories for training, so that the synthesized

actions directly relate to the actual robot commands. Our

results show that locally weighted regression provides us with

the ability to synthesize goal-directed actions directly from the

data instead of first approximating the example movements by

spline functions and then interpolating the coefficients of the

approximating splines,

Fig. 6 depicts the velocities of robot hand movements in

xy−plane of the Cartesian space. These velocities are different

from the velocities of example simulated movements in Fig.

2 because we used different types of throws in these two

120

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
220

225

230

235

240

245

250

255

distance (meters)

re
le

as
e

tim
e

(m
ill

is
ec

on
ds

)

Fig. 7. Spline function approximating the release times (blue) and release
times of the example movements (red)

examples. Nevertheless, both figures show a typical smooth

transition between movements as the target position moves

in space. Finally, Fig. 7 shows the spline approximating

the release point timings. Again, the form of the spline is

somewhat different from the simulated spline of Fig. 4, but

both splines exhibits smooth transition of release times as the

basket position changes.

V. CONCLUSION

The most important result of this paper is that dynamic

goal-directed actions can be synthesized by applying locally

weighted regression to the library of example movements,

where each of the example movements is known to fulfil the

task in one particular situation. We showed how to connect

action synthesis with techniques such as coaching and pro-

gramming by demonstration, which enables us to acquire the

example library. Our experiments demonstrate that we can

achieve fairly accurate results without providing the system

with models about the dynamics of the task and without need-

ing to acquire an excessive amount of example movements.

Finally, we demonstrated that locally weighted regression is

suitable for synthesizing goal-directed actions directly from

the training data instead of first approximating the example

movements by spline functions and then interpolating the

approximating splines.

Our approach is by no means limited to ball throwing. It is

pretty straightforward to apply it to other discrete movements

such as reaching, catching, tennis strokes, etc. More work is

necessary to generalize the approach to rhythmic movements.

We believe, however, that such a generalization is possible by

utilizing closed splines instead of the clamped splines, which

we used to synthesize discrete movements in this paper.

Acknowledgment: The work described in this paper was

partially conducted within the EU Cognitive Systems project

PACO-PLUS (FP6-2004-IST-4-027657) funded by the Euro-

pean Commission.

REFERENCES

[1] T. Asfour, F. Gyarfas, P. Azad, and R. Dilmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” in Proc. IEEE-RAS
Int. Conf. Humanoid Robots, Genoa, Italy, December 2006, pp. 40–47.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” AI Review, vol. 11, pp. 11–73, 1997.

[3] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, pp. 370–384, 2006.

[4] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag,
1978.

[5] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds.
Cambridge, Mass.: MIT Press, 2003, pp. 1547–1554.

[6] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied symbol
emergence based on mimesis theory,” Int. J. Robotics Research, vol. 23,
no. 4-5, pp. 363–377, 2004.

[7] L. Kovar and M. Gleicher, “Flexible automatic motion blending with
registration curves,” in Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, 2003, pp. 214–224.

[8] S. Kudoh, T. Komura, and K. Ikeuchi, “Stepping motion for a human-
like character to maintain balance against large perturbations,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2561–2567.

[9] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakanao, Y. Wada, and M. Kawato, “A kendama learning robot based
on bi-directional theory,” Neural Networks, vol. 9, no. 8, pp. 1281–1302,
1996.

[10] N. S. Pollard, J. K. Hodgins, M. Riley, and C. G. Atkeson, “Adapting
human motion for the control of a humanoid robot,” in Proc. IEEE
Int. Conf. Robotics and Automation, Washington, DC, May 2002, pp.
1390–1397.

[11] M. Riley, A. Ude, and C. G. Atkeson, “Methods for motion generation
and interaction with a humanoid robot: Case studies of dancing and
catching,” in Proc. 2000 Workshop on Interactive Robotics and Enter-
tainment, Pittsburgh, Pennsylvania, April/May 2000, pp. 35–42.

[12] M. Riley, A. Ude, C. G. Atkeson, and G. Cheng, “Coaching: An
approach to efficiently and intuitively create humanoid robot behaviors,”
in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Genoa, Italy, December
2006, pp. 567–574.

[13] C. Rose, B. Bodenheimer, and M. F. Cohen, “Verbs and adverbs:
Multidimensional motion interpolation using radial basis functions,”
Computer Graphics, Proc. SIGGRAPH ’96, pp. 147–154, August 1998.

[14] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Humanoid
robot motion generation with sequential physical constraints,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2649–2654.

[15] A. Safonova and J. Hodgins, “Analyzing the physical correctness of
interpolated human motion,” in Eurographics/ACM SIGGRAPH Sympo-
sium on Computer Animation, 2005, pp. 171–180.

[16] ——, “Construction and optimal search of interpolated motion graphs,”
in ACM Transactions on Graphics, 2007.

[17] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Robotics Research: The Eleventh International Sympo-
sium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg: Springer, 2005,
pp. 561–572.

[18] A. Ude, C. G. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using B-spline wavelets,” in Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, California, April 2000, pp.
2223–2228.

[19] ——, “Programming full-body movements for humanoid robots by
observation,” Robotics and Autonomous Systems, vol. 47, no. 2-3, pp.
93–108, 2004.

[20] Y. Wada and M. Kawato, “A neural network model for arm trajectory for-
mation using forward and inverse dynamics models,” Neural Networks,
vol. 6, no. 7, pp. 919–932, 1993.

[21] D. J. Wiley and J. K. Hahn, “Interpolation synthesis of articulated figure
motion,” IEEE Computer Graphics and Applications, vol. 17, no. 6, pp.
39–45, 1997.

[22] K. Yamane and Y. Nakamura, “Dynamic filter – Concept and imple-
mentation of online motion generator for human figures,” IEEE Trans.
Robotics Automat., vol. 19, no. 3, pp. 421–432, 2003.

121

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Ales Ude
	Also by Tamim Asfour
	Also by Gordon Cheng
