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Abstract— The goal of this paper is to investigate how to acquire 
useful action knowledge by observing the results of exploratory 
actions on objects. We focus on poking as a representative type of 
nonprehensile manipulation. Poking can be defined as a short 
term pushing action. Here we propose an explorative process 
that allows the robot to learn the relationship between the point 
of contact on the object boundary and the angle of poke and the 
actual response of an object. The robot acquires this knowledge 
without having any prior knowledge about the action. Initially, 
the robot was only able to move in random directions. Such self 
emergent processes are essential for the early cognition. 
The proposed process has been implemented and tested on the 
humanoid robot Hoap-3. 

I. INTRODUCTION 
The main motivation of this work is that many decades of 

research in the fields of robotics and artificial intelligence (AI) 
did not result in an intelligent “android like” robot. Why 
classical AI and robotics did not succeed in building an 
intelligent robot that can think like a human? 

Traditional AI did not succeed due to the lack of a solid 
theoretical foundation as discussed in a very pointed way by 
Dennett [1], when he had introduced the “frame-problem”. 
Additional weakness of the AI in the real world scenarios is 
the uncertainty in the world information, due to uncertain 
sensor information. However, in our opinion the most 
important drawback is that there is no self-emergence in 
classical AI. The instructor/user has to put more knowledge 
into the system than he gets it out of it. Nothing emerges by 
itself. In [2] Lungarella et al. present a survey on 
developmental robotic, which tries to solve the problems 
mentioned above. 

In this work we investigate how to improve the self-
emergence process when learning continuous object-action 
effects. Our research is part of an EU project PACO-PLUS, 
whose objective is to develop new methods to endow an 
artificial robotic system with the ability to give meaning to 
objects through perception, manipulation, and interaction with 
people. One of our guiding principles is that new object-action 
knowledge on a humanoid robot can emerge by exploring the 
external world. More specifically, by performing actions on 
different object, the robot can learn the results and 
preconditions of the actions. 

We build cognition on a paradigm of Object-Action 
Complexes (OAC). Objects and Actions are inseparably 
intertwined and that categories are therefore determined (and 
also limited) by the action an agent can perform and by the 
attributes of the world it can perceive; the resulting, so-called 

Object-Action Complexes (OACs) are the entities on which 
cognition develops (action-centred cognition). Entities 
(“things”) in the world of a robot (or human) will only 
become semantically useful “objects” through the action that 
the agent can/will perform on them. Objects are not just 
"things" upon which active agents act, but may be able to 
execute their own actions. Thus each active agent is just 
another instance of an OAC. This paradigm of OACs offers 
two novel key issues which will assure that a system with 
advanced cognitive properties can be developed.  

Objects and actions cannot be separated, because objects 
can induce actions (cup → drink), while actions can redefine 
objects. While this paper is concerned with OACs at the level 
of early perception-action events, the project strives to provide 
a continuous path from such events to complex cognitive 
processes, where OACs are used as basic building blocks. 

To acquire new primitive actions, the robot starts by 
randomly acting on various objects in its environment. The 
goal of this explorative process is to acquire new information 
that was not built into the system. As an example we study 
how to learn a relatively simple pushing behaviour. We also 
show how this knowledge can later be used to move (or to 
control) an object in a desired direction. 

Pushing, poking, and rolling are examples of nonprehensile 
manipulation of objects, i.e. object manipulation without a 
grasp. This kind of manipulation is used when it is difficult to 
grasp an object, when an object is too large or too heavy, etc. 
In this paper we focus on poking as a representative type of 
nonprehensile manipulation. Poking can be defined as a short 
term pushing action. Conceptually, our goal is to investigate 
how to acquire useful action knowledge by observing the 
results of exploratory actions on objects. For this purpose we 
study how poking behaviour can be obtained both when the 
agent generates the exploratory pushes (pokes) and/or when 
the agent only observes poking actions, performed by other 
agent or human. 

When poking an object, the object motion depends on the 
object’s shape, weight distribution and on the support friction 
forces. A lot of work has already been done in the field of 
mechanics on controllability and planning of poking [5],[6]. 
Obviously, poking could easily be implemented by assuming 
a proper representation for the physics of the task, but such an 
approach relies on a priori knowledge about the action and 
therefore does not solve the complete learning problem. 
Additionally, it is sometimes difficult to obtain the model 
parameters using available sensors (e.g. it is very difficult to 
obtain friction between the object and the pusher using vision). 
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If the physical model of the object and the action is not 
available, the robot has to experiment with different poking 
actions on the object. In this way the robot acquires new 
knowledge from exploration and human demonstration in the 
same way as infants learn their actions – performing actions 
on objects, i.e. playing with toys. While poking has been used 
to study cognitive processes before [4], our work focuses on 
different issues, that is learning complete controllers, whereas 
Fitzpatrick et al. were primarily concerned with extracting 
object properties associated with poking actions.  

After learning, the robot can use the newly acquired 
knowledge in order to poke an object in a specified direction. 
The robot is able to reason how and where an object has to be 
pushed to move where desired. Our implementation can be 
divided in two parts. Firstly, the robot learns how an object 
moves when it is poked from a certain position and from a 
certain direction. This can be accomplished by experimenting 
with different poking actions, in which the robot pushes the 
object several times from different directions and at different 
locations on the object boundary. During this process the 
agent builds a knowledge base, which describes the 
relationship between the point and angle of push on the one 
side and the actual object movement on the other side. 
Secondly, the acquired poking knowledge is used to control 
the object movement, i. e. to push the object along a 
prespecified trajectory.  

II. METHODS 
The method for learning poking action has been 

implemented on a humanoid robot Hoap-3 (Fig. 1). It is 60 cm 
tall, 9 kg heavy robot equipped with CCD cameras, 
microphone, foot load sensors and distance sensors. It has 6 
DOF in each leg/foot, 1 DOF in the waist, 3 DOF in the neck 
and 5 DOF in each arm. 

As already stated, the goal of the robot is to learn the result 
of a poking action. It starts by experimenting with different 
poking actions applied to different objects placed on a table. 
Afterwards the robot uses the acquired knowledge to reason 
about the object movement with respect to the performed 
action. The reasoning should be used later to find the right 
poking action in order to move the object as desired. 

The scene (experiment) has been realized as follows (see 
Fig. 1). The robot stands at a table and uses a tool to poke the 
object on the table. The objects used in the experiments are 
planar polygonal objects. To simplify the environment only 
one object is placed on a table at a time. To realize one point 
poking actions, the robot holds a tool in its hand. It is a stick, 
which increases the robot’s workspace. At the end of the tool 
we have mounted a cylinder, which assures a one point push. 
The part of the tool which has been used for pushing (the 
cylinder) will be denoted as a pusher. The robot uses only one 
arm in this experiment. Otherwise, the robot is fixed in the 
environment. To measure the position and the orientation of 
the object on the table, the robot uses stereo cameras mounted 
on its head. 
 

 
Fig. 1: Robot during pushing action  

III. VISION SYSTEM 
All objects used for poking were placed on a table. The 

table is planar, which makes the design of a vision system 
much simpler. To acquire positions and orientations of the 
object on the table, it is sufficient to use one camera. We used 
colour markers to simplify vision processing. We placed two 
markers on each object in order to extract both position and 
orientation of the object. Additionally, we marked the pusher 
to enable visual servoing.  

To define the transformation (mapping) between the image 
coordinate system and the world coordinate system, where the 
robot is situated in, a calibration has to be performed. The 
mapping incorporates extrinsic (position and orientation of the 
camera) and intrinsic (focal lengths, pixel size, image centre) 
camera parameters. We could estimate the intrinsic and 
extrinsic camera parameters using other methods (kinematics, 
chess board…). However, in our case we rather used the robot 
to move the marker in front of the vision system. Using more 
than 100 measurements, we calculated the transformation 
matrix using least-square error methods.  

The use of the robot in the calibration process makes the 
system much simpler and more flexible. Additionally, the 
result can be more precise, since same data is used during the 
calibration as well as during poking. So the same sensor 
uncertainty appears twice and the errors can cancel each other 
(e.g. kinematics data, vision data…). That means that the 
same kinematic error which appears during calibration, will 
also appear during the control – and that will already be 
included and handled in the calibration process. 

The accuracy of the robot and the vision system is rather 
low. To improve the precision of motion, we had to use visual 
servoing techniques. To determine the position of the pusher 
using vision system we put a marker on top of it. Since the 
vision is calibrated only in one plane, the marker has to lie in 
that plane. This is true during poking; however, when the 
pusher is above of the object, the position is not totally correct 
any more. In this case the robot kinematics is more accurate. 
To solve this, we have implemented a continuous switch 



between kinematics and vision information, where the amount 
of each depends on the distance from the calibrated plane. 

IV. LEARNING 
In the first phase of the process, the robot has to learn the 

behaviour of an object, when the object is poked from a 
certain direction and at a certain angle (see Fig. 2). 

In this phase the robot experiments with different poking 
actions. The robot has to push an object from different sides of 
an object as well as under different angles. In the beginning of 
the process the robot (agent) has no knowledge about the 
poking action and the robot experiments with different poking 
actions completely randomly. Afterwards, the robot should 
only perform action at the points (or angles) where the 
knowledge (or the model) is not precise enough. 
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xworld 

yworld 
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Fig. 2: Schematics of a poking action 

After applying a poking action, an object accelerates and 
changes its position and orientation. Since the objects are very 
light and the friction between the object and the table is 
relatively high, we can neglect the dynamic properties of the 
motion. Typical response of the object is shown in Fig. 3. The 
object velocity settles in less that 200 ms. The reason for very 
noisy object velocity is that we have used vision to obtain the 
position of the markers. However, since training can be done 
off-line, the data can be filtered and processed before the use.  

 
Fig. 3: Typical response (velocity) or an object after applying a poking action  

Due to the fact that an object settles its response in a very 
short time, we can model object behaviour statically. We 
model the relationship between the displacements of the 
pusher and the displacement of an object. The displacements 
of the pusher are expressed by two parameters: the point and 
the angle of contact on the object boundary. The velocity of 
the pusher is kept constant. The point of contact is expressed 
as the angle between the line segment connecting the point of 
contact and the centre of the object and the x-axis of the 
object’s coordinate system. Similarly, the angle of a contact is 
expressed as the angle between the pushing direction and the 
tangent at the point of contact. 

The response of an object is represented by three 
parameters, i.e. the planar velocity of the object centre and the 
rotational velocity about the centre point on the object. The 
agent’s view of the experiment is shown in Fig. 4. 

 

 
Fig. 4: Agent view of a scene during learning  

 
To represent the relationship between the point and the 

angle of a contact and the object response, we used a neural 
network with two hidden layers. Based on the measurements 
we performed an optimization process and compared neural 
networks with different number of neurons in each layer. 
Since we could acquire quite a large set of data, one part of 
data has been used for learning while the other part of data has 
been used for verification of the neural network. 

The result of the comparison of different neural networks 
showed that the most reasonable selection is to use different 
networks for different outputs. The resulting neural networks, 
which model the object behaviour satisfactory and are still 
simple enough, are shown in the following table: 

 
 NN 

inputs 
Number of 
neurons in 
1st hid. layer 

Number of 
neurons in 
2nd hid. layer 

NN 
output 

x position 
and angle 

11 3 Velocity 
in x dir. 

y position 
and angle 

12 6 Velocity 
in y dir. 

Φ position 
and angle 

9 4 Velocity 
in Φ dir. 



Note that only the directions of object movement are 
considered in the optimisation. The amplitudes of velocities 
can be modulated by stronger (faster) pushing action. 

V. CONTROLLING 
After the learning phase is completed, the robot can 

generate poking actions to move an object in the desired 
direction. The task of the robot in this phase is to perform a set 
of poking actions in order to bring an object where desired. 
Here, a higher-level motion planner should provide the 
desired movement of the object. The agent has to find out 
where and how to poke the object to achieve motion close to 
the desired one. During this process the agent has to use the 
knowledge acquired in the learning phase. Agent view of the 
poking scene is shown in Fig. 5. 

VI. RESULTS 
The proposed approach has been implemented on a 

Mitsubishi Pa-10 industrial type robot and on a humanoid 
robot HOAP-3. The accuracy and the workspace of the 
Mitsubishi robot are much larger than in the case of the Hoap 
robot; therefore, it has been much more straightforward to 
perform and to verify the learning and the control process. 

On the other hand the experiments performed on a Hoap 
robot took us much more time and effort. In the experiments 
we used only the right arm, which has five DOFs. Technically, 
to achieve a pushing action with a cylinder (pusher), five 
DOFs are necessary. Three DOFs are needed to control the 
position of the pusher and two DOF are needed to control the 
rotations. One DOF of rotation about the cylinder axis is not 
important and therefore does not need to be controlled. The 
robot’s right arm also has five DOFs. 

Since the robot is rather small and there are no redundant 
DOFs very small workspace can be achieved. To improve that, 
we have treated the orientations as less significant and have 
controlled them in the null space. Additionally, we have used 
two tools in the same robot hand. One tool has been mounded 
in such a way that the robot achieved points near the body, 
while the other tool enables achieving points more far away. 
At the ends of both tools two cylinders has been mounted, 
which were used for pushing.  

To control the robot we used a velocity based task 
controller and a quaternion control in the null space for both 
orientations. 

 

 
Fig. 5: Agent view of a scene during controlling object movement  

 
Note that, the robot can not always achieve the desired 

velocity. The desired velocity is or can be defined in three 
directions (three DOFs); however, the robot controls only two 
input variables, the point and the angle of contact. 
Additionally, any arbitrary velocity vector can not be achieved 
due to the physical limitations of the action (this is still a 
nonprehensile action). 

We performed the learning process on a set of different 
planar objects shown in Fig. 6. Fig. 7 shows the response of a 
square object in all three directions with respect to the point 
and angle of contact. 

To achieve optimal motion in a given situation, the agent 
needs to optimize a criterion function with respect to the point 
and angle of push, e. g. the weighted square error between the 
desired motion and the predicted one. Thus we need to find a 
global minimum of the following function: 

 

  (1) 2( ( )) ,des prede X X= −W

 

where Xdes represents the desired motion in all three DOFs 
and Xpred represents the motion of the object which is 
predicted by the neural network, respectively. W is a weight 
specifying the importance of each direction.  

It is easy to find a local minimum of a function defined in 
(1) using classical optimisation techniques. However, to find a 
better solution and to avoid falling into local minima, we run 
the optimization process several times with different initial 
values in order to find a better solution or even the global 
minimum. The solution, which might not be the globally 
optimal one, results in motion that is usually close to the 
desired motion. After applying the poking action, the object 
pose changes and the new point of contact and angle of push 
are determined, which can be better than the previous ones. 

Fig. 6: A set of objects that were used for learning  

 



 
Fig. 7: Relationship between point and angle of contact and object response 

In the learning process the robot generated random poking 
action from all sides of objects (point of contact on the 
boundary travels from 0 to 2π) and from different angles in 
the range from – π to π. The robot also generated actions that 
do not result in any object motion (for all angles that are less 
than – π/2 or more than + π/2), where the motion of the pusher 
is directed away from the object. Based on our experiences we 
know that such actions do not result in any motion. The 
learning would be much faster if we provide as much 
knowledge as possible; however, we wanted that the agent 
learns this rule by itself, without any hard coding. The goal of 
our work is to develop a system which could develop 
cognitive ability of the robot - a system where a robot could 
evolve in a more intelligent machine. Therefore, such things 
should not be hardcoded. 

To validate the learned controller, we defined a task of 
consecutive point-to-point movements, where the object 
orientation was not important. In case of Mitsubishi robot the 
trajectory has been more complex. The object had to move 
between the corners of the square of size 30 cm x 30 cm (see 
Fig. 8). In Fig. 8, points are marked by small circles. Fig. 8 
also shows the actual movement of the object (blue line). The 
object starts from initial position an moves to point P1, then 
moves through P2, P3 and to P4, and finally returns to P1. The 
movement of the object is not very precise because the action 
learning has not been perfect. In any case, we cannot expect 
that a nonprehensile action would result in a movement with 
the same precision as an action with a grasp (with full control 
over an object). Nevertheless, the learned poking action is 
precise enough to keep the object within a few centimetres of 
the desired path. 

In the case of the Hoap robot the trajectory has been much 
simpler. The robot had to move a smaller object to a point in 
space (marked with a red circle in Fig. 9). The trajectory has 
been defined in such a way that the robot needed to use both 
tools in order to be able to achieve the task. 

Fig. 10 shows the rotation of the object during the whole 
movement cycle. Since the rotation of the object has not been 
controlled, it is changing randomly. This was achieved by not 
including the object rotation in the process of searching the 

most appropriate point for pushing. The weight W was, 
therefore, set to: 

 
1 0 0
0 1 0 ,
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W
 (2) 

 
where 0 as the last diagonal element correspond to the object 
rotation. Fig. 11 shows the points of contact and the angles of 
contact during the whole cycle. It can be seen that point and 
angle of contract change significantly depending on a current 
object state. 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

x (m)

y 
(m

)

P2

P3

P1

P4 going from
P3 to P4

going from
P4 to P1 going to

P1

going from
P1 to P2

going from
P2 to P3

initial object
position

 
Fig. 8: Object positions during point–to-point movement between the corners 

of a square (experiments on a Mitsubishi robot) 
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Fig. 9: Object positions during point–to-point movement  

(experiments on a Hoap-3 robot) 
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Fig. 10: Object rotation during point-to-point movement 
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Fig. 11: Point and angle of contact during point to point movement 

VII. DISCUSSION AND FUTURE WORK 
 
In this paper we described how to learn the relationship 

between a point and an angle of a poke and the response of an 
object. The robot acquired this knowledge by exploration 
without having any prior knowledge about the action. While 
very precise learning of pushing actions can take a very long 
time, the agent learns a rough but reasonable approximation of 
the action already after a few explorative pushes. This initial 
knowledge can already be used for a rather rough control of 
the object movement. Next, while controlling the motion the 
robot can update its knowledge base by observing the actual 
movement of the object. Thus the relationship between the 
desired and the actual object motion gradually becomes more 
accurate and the control of the object movement direction 
improves. Additionally, to make the learning of poking 
actions more optimal, human instructor can demonstrate the 
most representative pokes (e.g. perpendicular pokes from a 
few different sides). 

However, the knowledge, that the robot obtained by 
exploration, is useful only for the object that was used for 
training. Currently, for each new object exploration has to 
start from the beginning, thus it takes a long time before a 
satisfactory large object library is built. There is no 

generalisation. Our plan for the future is to learn more general 
pushing controllers instead of learning the behaviour of every 
object. The generalisation can be achieved by performing 
many different pushing actions on different objects. The 
actions and object has to differ in relevant characteristics in 
order to identify the general pushing rule. To solve such 
problems, some authors use the recurrent neural networks 
with parametric bias [7],[8]. In these works, static images of 
objects are linked to dynamic features of objects. 

Using such general laws, people can predict the movement. 
However, when the actual movement of the object differs 
from the predicted one, humans include the feedback loop and 
adapt their actions in order to achieve the desired motion of 
the object. In the same way closed loop control has been used 
in our work. The robot/agent can predict only the approximate 
behaviour of the object. Due to the object properties that has 
not been modelled or cannot be measured, e.g. friction, mass 
distribution, etc., the actual motion differs and the robot has to 
adapt its motion to improve the motion of an object. 

In summary, we realized the process of associating object-
action events through an explorative, self emergent process. 
Such processes are of great importance for the early cognition. 
No knowledge about pushing was provided to the robot. We 
only provided rules about how to explore the environment and 
the robot obtained the controller by itself. 
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