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Abstract—The recognition and synthesis of parametric move-
ments play an important role in human-robot interaction. To
understand the whole purpose of an arm movement of a human
agent, both its recognition (e. g., pointing or reaching) as well
as its parameterization (i. e., where the agent is pointing at)
are important. Only together they convey the whole meaning of
an action. Similarly, to imitate a movement, the robot needs to
select the proper action and parameterize it, e. g., by the relative
position of the object that needs to be grasped.

We propose to utilize parametric hidden Markov models (PH-
MMs), which extend the classical HMMs by introducing a joint
parameterization of the observation densities, to simultaneously
solve the problems of action recognition, parameterization of the
observed actions, and action synthesis. The proposed approach
was fully implemented on a humanoid robot HOAP-3. To evaluate
the approach, we focused on reaching and pointing actions.
Even though the movements are very similar in appearance, our
approach is able to distinguish the two movement types and
discover the parameterization, and is thus enabling both, action
recognition and action synthesis. Through parameterization we
ensure that the synthesized movements can be applied to different
configurations of the external world and are thus suitable for
actions that involve the manipulation of objects.

I. INTRODUCTION

To effectively interact with people, a humanoid robot needs
to be able, firstly, to recognize human movements in order to
understand the intentions of an agent communicating with the
robot, and secondly, to imitate human actions in a human way.
These are essential tools that are needed to enable the robot
to autonomously operate in a human environment.

We are interested in an action representation that is (a)
easily and efficiently trained by demonstrating a set of ex-
emplar movements and (b) able to recognize and synthesize
the demonstrated actions for arbitrary parameterizations. The
action representation should allow the robot to recognize
and perform the learned movements also for not previously
demonstrated parameterizations, e. g., reaching and pointing
at objects at arbitrary locations.

To achieve this goal we utilize parametric hidden Markov
models (PHMMs), which were originally proposed in [1].
We encode PHMMs by observations states that consist of
Cartesian 3-D positions of shoulder, sternum, elbow, wrist,
thumb, index-finger and its knuckle. The advantage of such
an representation is that the goal of the considered actions
(reaching and pointing) is explicitly encoded in the final state
of the PHMMs, which makes it easier to find parameterization

for action interpolation. To assure a proper interpolation that
preserves the shape of the action trajectory, a proper align-
ment of the different exemplar actions, i. e. the alignment of
corresponding hidden Markov states, is essential. We solved
this problem by constraining the state transitions.

As an example, we studied the teaching of a humanoid
robot through pointing and reaching gestures. The goal was to
put differently shaped objects into a children’s toy box with
differently shaped holes corresponding to different shapes. The
robot should learn both symbolic knowledge (which object
belongs to which hole) and continuous action knowledge (how
to move the objects and release them into the appropriate hole).
For training and testing, the objects could be placed at any
location on the table. An online demo is available via web
page [2].

In addition, we present a systematic evaluation of the
recognition and synthesis of our action representation. In the
evaluation, we focus on the actions used in the demonstration
on a humanoid robot HOAP-3, i.e. reaching out for an object
to grasp it and pointing actions. Both actions have very similar
trajectories (starting and ending in the same base pose) and
are thus difficult to distinguish. It is interesting to note that
simple diagnostic features like arm velocity, or the distance
from hand to chest would fail in this context.

In the following sections, we first give a short overview
of the related work. In Sect. III we introduce our exemplar-
based parametric HMM movement representation. The action
synthesis is described in Sect. IV. In Sect. IV-C we present the
results of the robot experiments. In Sect. V we discuss our
systematic evaluation of the precision of our action represen-
tation for recognition and synthesis. Conclusions in Sect. VI
complete our paper.

II. RELATED WORK

The discovery of mirror neurons motivated robotics re-
searchers to look for action representations that can be used
for both recognizing other agents’ actions and generating the
observer’s own movements [3]. Among the representations
that can be used both for synthesis and recognition: dynamic
movement primitives [4], [5], recurrent neural network with
parametric biases (RNNPB) [6], and hidden Markov models
(HMMs) [7], [8], [9].

2008 8th IEEE-RAS International Conference on Humanoid Robots
December 1 ~ 3, 2008 / Daejeon, Korea

978-1-4244-2822-9/08/$25.00 ©2008 IEEE



Hidden Markov models became popular in the context of
speech recognition [10], [11]. One major advantage of HMMs
is their ability to compensate for uncertainties in time. Inamura
et al. [7] showed that by defining the observation states as
postures on the human trajectories, HMMs can be used to rep-
resent specific movement trajectories, which they called proto-
symbols. However, neither discrete nor continuous HMMs are
able to generalize over a class of movements which vary
according to a specific set of parameters (like for example
reaching and pointing). One possibility to recognize an entire
class of movements is to use a set of hidden Markov models
(HMMs) in a mixture-of-experts approach, as first proposed in
[12]. In order to deal with a large parameter space, one ends
up with a lot of experts, and training becomes unsustainable.

As mentioned above, the extension of the classical HMMs
into parametric HMMs was first proposed by Wilson and
Bobick [1]. They developed an approach that is able to
learn a parametric HMM based on a set of demonstrations,
where training and recognition is performed by using the EM
algorithm with parameterization parameters as latent variables.
Note that this is different from [8], and [9], where HMMs
are trained from multiple examples of an essentially same
movement. However, Wilson and Bobick considered recogni-
tion only, more specifically, e. g., the recovery of the pointing
direction based on wrist trajectories.

Contrary to Wilson and Bobick, we aim at recognition
and synthesis of full arm movements for the control of
humanoid robots within the same framework. In our work,
”recognition” means to recognize the action itself as well as its
parameterization. The synthesis of parametric actions implies
the use of data of high dimension (stacked 3-D trajectories,
one for each joint), and a high number of states for an accurate
movement representation. It has already been shown both in
robotics [13] and in computer graphics [14] that parametric
blending of movements can result in physically feasible actions
that can attain the goal of an action. These works, however,
do not consider the problem of recognition.

Human motion capture [15] as such is not the topics of this
paper. We note, however, that motion capture is an essential
tool for the acquisition of training data for imitation. We
experimented with magnetic systems, optical tracking devices,
and general vision-based methods. General vision data was
tested for recognition, but we used the data from a marker-
based optical system as an initial input when working with the

Fig. 1. Left: Capturing Session for our dataset. — Right: Capture
Model. For motion capturing, the markers of the depicted model (tiny balls)
are aligned to the captured markers (see left figure).

robot (see Fig. 1).

III. MOVEMENT REPRESENTATION BY PHMMS

In this section we first give a short introduction to HMMs
and then discuss our extension to parametric HMMs.

A. Preliminaries of HMMs

A hidden Markov model is a finite state machine extended in
a probabilistic manner. It is defined as a triple λ = (A,B,π).
Let qt be the hidden states of the model at time t and x the ob-
servations associated with each hidden state. Then, B defines
the output distributions bi(x) = P(x|qt = i) of the hidden
states. The transition matrix A = (aij) defines the transition
probability between the hidden states i, j = 1, . . . , N , and thus
encodes the temporal behavior of the modeled sequences. The
initial state distribution is defined by the vector π.

Our approach is based on continuous left-right HMMs [16].
The output probability distribution of each state i is modeled
by a single Gaussian distribution bi(x) = N (x|µi,Σi).
State transitions are either self-transitions or transitions to the
successor. All other transition probabilities are set to zero.
Given a sequence of postures X = x1 . . .xt . . .xT on an
example trajectory, each Gaussian Ni(x) := bi(x) ”covers” a
section of the trajectory, where the state i increases over time.
In the case of multiple trajectories, the Gaussians capture the
variance of the training input. In addition, an HMM compen-
sates for different progression rates of the training trajectories
by varying the transition from one hidden state to the next.
Obviously, the synthesis of movements is straightforward for
this type of HMMs. For a comprehensive introduction to
HMMs, we refer to [10], [11].

For recognition or classification, HMMs are generally used
as follows: For each sequence class k, an HMM λk is trained
by maximizing the likelihood function P(X|λk) with the
Baum-Welch expectation maximization (EM) algorithm [11]
over a given training data set X k. The classification of a
specific output sequence X = x1 . . .xT is done by identifying
the class k for which the likelihood P(X|λk) is maximal.
The forward-backward algorithm [11] is used to efficiently
calculate these likelihoods.

One obvious approach to handling classes of parameterized
actions for the purpose of parameter recognition is a mixture-
of-experts approach [12] by sampling the parameter space.
However, this approach suffers from the great number of
HMMs needed to be trained and stored for all possible
trajectories within one class. Therefore, we introduce the pa-
rameterization of an action as an additional model parameter.
This is also the basic idea of [1].

B. Parametric HMM Framework

The basic idea of our approach to handling classes of
parameterized actions is to generate a new HMM for novel
action parameters by a locally linear interpolation of exemplar
HMMs that were previously trained on exemplar movements
with known parameters. The generation of an HMM λφ for a
specific parameter φ is carried out by component-wise linear
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Fig. 2. Left: The upper three dark ellipsoids are depicting Gaussians
N 0

1 , . . . ,N 0
3 of states i = 1, 2, 3 of an local HMM λ0, whereas the lower

three dark ellipsoids belong to a model λ1. The dots within the dark ellipsoids
are sketching training sequences with parameterization u = 0, and u = 1
depending on the target at the vertical line. In addition, the Gaussians Ni of
a global model λ are indicated in light gray. This global λ is a model for all
training sequences with u ∈ [0, 1]. — Right: Similar to the left figure,
some states of a global HMM (middle) and local HMMs (right) are shown.
In contrast to the figure left, the HMMs are trained based on recorded 3D
trajectories of a finger tip of a person pointing at three different positions
at table-top (compare Fig. 1). The index finger starts always at the same
point as modeled by the Gaussian which is sketched by the green ball, and
approaches specific positions which are modeled by the light gray balls of the
local HMMs. The global HMM used to setup these local HMMs has a disc
like Gaussian, which models all approached positions at table-top.

interpolation of the nearby exemplar models. In the case of a
single parameter u and two exemplar models λu=0 and λu=0,
a new Gaussian N u

i (x) = N (x|µu
i ,Σ

u
i ) for a model λu with

u ∈ [0, 1] is generated by interpolation

µu
i = (1− u)µ0

i + uµ1
i , Σu

i = (1− u)Σ0
i + uΣ1

i . (1)

This situation is described in Fig. 2. Such an approach, how-
ever, works only if two corresponding states of the two exem-
plar HMMs model the same semantical part of the trajectory
(as in Fig. 2, left). Hence the state-wise alignment is vital and
is described in Sec. III-B1. The expansion to the multi-variate
case of parameterization φ is then straightforward, e. g., by
using bilinear (φ = (u, v)) or trilinear interpolation.

Fig. 3. Time duration by State Replacement. Each state is replaced by several
(here, three) pseudo states which share the same output distribution.

1) Synchronization of HMMs: In this section we show
how to assure that corresponding states of exemplar HMMs
model the same semantical parts of movements. The required
alignment of the states to the sequences is somehow similar
to the alignment of two sequences by dynamic time warping
(DTW) [17]. Here, however, we need to align the hidden states
in the presence of many training sequences.

The underlying idea of the synchronization technique is to
set up local exemplar HMMs λφ by using the invariance of
HMMs to temporal variations. We proceed in two steps: firstly,
a global HMM λ is trained based on the whole training set
X of different parameterizations φ of the same action. This is
done using the EM algorithm mentioned in Sect. III-A. Such
a global HMM is sketched in Fig. 2, left, by the light gray
Gaussians. The situation that actions of different parameter-
izations are covered in such a symmetrical way as in Fig. 2
can be enforced by ensuring that the hidden state sequences
pass the trajectory always in the sequential order from state 1

to N . This is done (a) by choosing left-right HMMs to model
the movement, and (b) by allowing only state sequences that
start in the first and end in the last state. In addition, (c) the
invariance of the HMM to temporal variations, even though
necessary, needs to be somehow constrained. We accomplish
this by adding explicit time durations to the states of the HMM
[11]. This is similar to constraining the warping in standard
DTW approaches [17]. Here, by using explicit state durations,
one can prevent that one state generates only one output
for one sequence and a lot of outputs for another sequence.
Otherwise, one would end up with an improper alignment
of the sequences (see [17], Fig. 2 C, for an improper, and B
for a proper alignment). To avoid the numerical problems
associated with scaling [11], we replaced each state of the
left-right HMM with pseudo states that share one Gaussian
(see Fig. 3). This forces the hidden states sequences to stay
in a state, e. g., as in Fig. 3, for at least two and for maximal
three time steps.

In the second step, we consider the partial training set Xφ

associated with a specific parameterization φ. Using this data
set, we estimate the local HMM λφ again by using the EM
algorithm, but now, we use the parameters of the global HMM
λ as an initial value for the EM algorithm. In addition, to
preserve the state alignment of the local HMM as it is given
by the global HMM, we fix the means after the first EM
step. In the following, we will exemplify, that this adapted
EM procedure gives a proper state alignment of the local
HMMs: In the first E step of the EM algorithm, the posterior
probabilities γk

t (i) = P(qt = i|Xk,λ) of being in state i at
time t are computed for each sequence Xk = xk

1 . . .x
k
T of the

training set Xφ. This is done based on the current parameter
values, which are at this point the values of the global HMM.
Thus, γk

t (i) is the “responsibility” of state i for generating
xk

t , as given by the global HMM. In the M step of the EM
algorithm, each µi of a Gaussian of state i is re-estimated as
γk

t (i)-weighted mean:

µi =

∑
t,k γ

k
t (i)xk

t∑
t,k γ

k
t (i)

(2)

Now, consider Fig. 2. The responsibilities γ0
t (i) of the upper

sequence x0
1x

0
2 . . .x

0
7 for t = 1, 2 are large for i = 1 but small

for i > 1 under consideration of the position of the Gaussian
N1 of the global HMM λ. Thus, µ0

1 of N 0
1 of the local HMM

λ0, as calculated by Eq. (2), lies as desired between x0
1 and

x0
2. Similarly, µ1

1 of the local HMM λ1 computed based on
the lower sequence x1

1x
1
2 . . . would lie between x1

1 and x1
2.

Hence, the alignment of µ0
1 and µ1

1 of the local HMMs λ0

and λ1 as given by the global HMM λ is ensured.
2) Synthesis, Recognition, and Parameters: At first we

consider the synthesis in the general case of a parametric
movement parameterized by φ ∈ Rd. Let φ be the param-
eterization of the movement that needs to be generated. For
synthesis we need properly synchronized HMMs λφn trained
for movements with parameterization φn for the 2d corners
φn of a d-dimensional cuboid (or at least a warped version of



such an cuboid) that contains the required parameterization
φ. Since φ is inside the cuboid, there exist interpolation
parameters ω(φ) such that φ can be expressed as a d-linear
combination of φn with parameters between 0 and 1. Lets
denote by λφ the component wise d-linear interpolation of
the HMMs λφn interpolated with interpolation parameters
ω(φ). This λφ, based on the local HMMs λφn , is what
we call a parametric HMM (PHMM). The calculation of the
parameters ω = (u, v, w) in the case of 3-D, or (u, v) in the
case of 2-D parameterization interpolation, which we used in
the experiments, is straight-forward, see Sect. IV. The bilinear
interpolation formula is given by (5), the trilinear by (4), the
extension to the d-linear case can be constructed easily. The
movement trajectory f(t) for a specific parameterization φ
can be synthesized using, e. g., linear spline interpolation of
the sequence of means µφ

1 µφ
2 µφ

3 . . . of λφ with respect to the
expected time durations encoded in the transition matrix of
Aφ.

The recognition of the type of movement and its parame-
terization can be accomplished as follows. For each class k
we have a PHMM λφ

k that represents a parametric movement.
Now, lets assume that we need to classify a sequence X .
We start by estimating the most likely parameter φk for
each possible parameterized action class k. This involves
maximizing the likelihood functions:

φk = arg max
φ∈[0−ε,1+ε]d

P(X|λφ
k ), (3)

The class identity is given by the class for which the likelihood
P(X|λφ

k ) is the highest. In addition, the associated parameter
φk gives the most likely parameterization. In the experi-
ments we maximized the log likelihood functions lk(φ) =
log P(X|λφ

k ) (see Fig. 9 (c)). This is done using the gradient
descent method and numerical derivatives of lk(φ).

In our evaluation of the movement representation, the pa-
rameterization is given by 2-D coordinates in the plane of a
table-top. In that experiment we have up to 3×3 local HMMs
for each movement type which form a regular raster. In this
case the first guess is always based on the HMMs defined at
the outermost positions, then the estimate is refined based on
the HMMs with parameter positions that define the smallest
rectangle which includes the first guess.

IV. TRANSFER OF MOVEMENTS TO THE ROBOT

In this section we consider how to generate arbitrary robot
reaching and pointing movements using PHMMs. Our ap-
proach can be easily used for other types of parametric move-
ments. For training we use example reaching and pointing
movements that stretch out or point to a number of different
grasping positions distributed in the robot workspace. An
example of the workspace is shown in Fig. 4, where the eight
target tijk positions form a cuboid. This way, the location of
the gripper on the table as well as up to the certain height
above the table can be controlled. The training movements
are used as explained in III to train the PHMM. The PHMM
is based on eight local HMMs, one for each of the eight

u
v

w

ttt

ttt011 ttt111

ttt110ttt010

ttt100ttt000

ttt001 ttt101

Fig. 4. Target Points of Movements at a table-top. In addition, a finger tra-
jectory of a pointing movement with target point t is shown. The coordinates
u, v, w are used for interpolation.

example positions. Note that at each training position, several
movements are used to train the HMM. The training step
assures that the HMMs are all synchronized for interpolation.

In our experiment, the recorded reaching and pointing
movements start and stop at the same base position (hand
beside hip), i. e. we recorded both the reaching for the object or
pointing movement and the withdrawing movement. In order
to be able to synthesize realistically looking sequences of sev-
eral pointing and reaching movements without discontinuities
if played back in sequence, the base pose at the beginning
and at the end of the motions is normalized. This is done
by blending the trajectories with respect to the mean starting
position.

A. Synthesis of Robot Movements for Specific Positions

For each movement type we have a PHMM of eight local
HMMs trained for specific movements to the targets tijk,
like shown in Fig. 4. The recorded movements are a stacked
vector x = (p>, q>, . . .)> of the trajectories of the right arm
shoulder p, elbow q, thumb, finger, and its knuckle.

Since we consider the trajectories relative to the shoulder
position we calculate the mean shoulder position over all
example trajectories and use this as reference. Now, consider
an arbitrary target t = tuvw in the workspace that is given by
interpolating the corners tijk by trilinear interpolation with the
parameters (u, v, w):

tuvw = w̄tuv0 + wtuv1 (4)

tuv0 = v̄(ūt000 + ut100) + v(ūt010 + ut110) (5)

tuv1 = v̄(ūt001 + ut101) + v(ūt011 + tt111), (6)

where

w̄ = 1− w, v̄ = 1− v, ū = 1− u.

Then a movement f = (p>, q>, . . .)> for the target position
t can be synthesized as described in Sect. III-B2. Essentially,
that is interpolating each component (shoulder, elbow, . . . ) of
the means of the corresponding states of the local HMMs
as given by the interpolation formula (4). The interpolation



parameters (u, v, w) for a specific target t are easily calculated
by

u =
t− t000
|t− t000|

· t100 − t000
|t100 − t000|

, (7)

v =
t− t000
|t− t000|

· t010 − t000
|t010 − t000|

, (8)

w =
t− t000
|t− t000|

· t001 − t000
|t001 − t000|

. (9)

Since the robot is smaller than the demonstrator, these
trajectories are scaled to fit to the overall arm length of the
robot. Of course the distances, e. g. between the wrist and
elbow, are not preserved by interpolation, but become slightly
shorter or longer than the true limb lengths. However, this
does not matter if the movements are transferred to the robot
as described in Sect. IV-B.
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Fig. 5. In figure (a), the points p, q, and r, which represent the shoulder,
elbow, and hand, define a plane, on which the elbow q′ of the robot should
lie. Figure (b) shows the two reference coordinate systems (u1,u2,u3) and
(v1,v2,v3). The coordinate system (u1,u2,u3) is the reference of the
upper arm, whereas (v1,v2,v3) is fixed and does not move with the upper
arm.
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Fig. 6. Rotation of the Robot’s Wrist. The twist angle α = ](b⊥,o
′) of

the wrist is calculated in the twist plane.

B. Calculation of Joint Angles

The interpolation of Sect. IV-A results in an arm trajectory
which is described by the Cartesian trajectories of the shoulder,
elbow, wrist, thumb, index-finger and its knuckle. In this
section, we will describe how the robot joint angles of the
upper arm are computed from this data. The joints under

consideration are the shoulder joint with three degrees of
freedom, and the elbow joint with one degree of freedom.
These values are determined only on the basis of the human
elbow and hand position relative to the shoulder. The hand
position r (Fig. 5) is given as the mean of the human thumb,
index finger, and knuckle of that finger. Furthermore, the
orientation of the hand is given by the thumb and the finger.

To account for a difference in size between the human
demonstrator and the robot, human data is scaled to the size of
the robot as described in Sect. IV-A. For the calculation of joint
angles, only the relative positions of the elbow q and hand r
with respect to the shoulder p are of interest. The shoulder
can therefore be assumed to be at the origin (p = 0); and the
human hand and elbow positions, r and q, of Fig. 5 (b) are
appropriately scaled for the robot.

The four joint angles of the robot arm are calculated so that
the robot hand is at the same position as the scaled human
hand, and that the elbow q′ is in the plane defined by three
points p, q, and r of the human demonstrator. The elbow
position q′ of the robot differs from the (scaled) elbow position
of the demonstrator if the proportions of the robot, i. e. the
upper arm compared to the forearm, differ from those of the
demonstrator.

To calculate the shoulder angles (see Fig. 5 (a)), the direc-
tion u1 of the elbow q′ is required. The angle γ of the elbow
is defined by the length a of the upper arm, the length b of
the lower arm (elbow – hand) of the robot, and the distance
c = pr from the shoulder p to the target point r. We calculate
γ as

γ = arccos
(
a2 + b2 − c2

2ab

)
, (10)

and

β = arccos
(
a2 + c2 − b2

2ac

)
. (11)

Now, u1 is given by

u1 = cosβ ·w1 + sinβ ·w2, (12)

where

w1 = −→pr
/

pr (13)

w2 = w′
2

/
|w′

2| (14)
w′

2 = −→pq − 〈−→pq,w1〉w1. (15)

For HOAP-3, the three shoulder joint angles can be calculated
as Cardan angles for the rotation between the coordinate
systems {vi} and {ui} (see Fig. 5 (b)). The Cardan angles1

φ, θ, ψ are calculated using the rotational matrix between the

1Cardan angles φ, θ, ψ define a rotation R as R = Rz
ψR

y
θR

x
φ .



coordinate systems2:

φ = arctan2(r32, r33) (16)
θ = − arcsin(r31) (17)
ψ = arctan2(r21, r11) (18)

where

R = (rij) = [u1|u2|u3]
> [v1|v2|v3] . (19)

The still unknown vectors u2, and u3 are given by the
equations:

u2 = u′2
/
|u′2| (20)

u′2 = −w2 − 〈−w2,u1〉u1 (21)
u3 = u1 × u2. (22)

The orientation of the hand was initially extracted from the
motion data based on the direction given by the vector from
the finger to thumb. However, it turns out to be better to align
the robot gripper to the plane of the table, at least for that part
of the motion which is used to interact with the objects. The
degree of opening or closing the robot gripper was initially
set to the distance between the finger and the thumb of the
human. However, it turns out to be better to use maximal
gripper opening while interacting with an object, as we used
objects of different shapes in the recording session.

Since the wrist of the HOAP-3 has only one degree of free-
dom (twist), only the projection of the orientational direction
vector o (finger−→thumb) onto the rotation plane of the wrist
is used to set its twist angle. This is illustrated in Fig. 6. The
joint angle is given by (see Fig. 6):

α = arccos
(
〈b⊥,o′〉
|b⊥| |o′|

)
· sign(〈o′, b× b⊥〉), (23)

where

o′ = o− 〈o, b⊥〉
|b⊥|2

b⊥. (24)

C. Experiments with a Humanoid Robot HOAP-3

We tested the effectiveness of our approach by implement-
ing a task involving a number of objects that are first associated
with different openings on the table and need to be placed into
the correct opening (see also Fig. 7 (left)). An online demo
is available via web page [2]; the recording of demonstrated
movements is not included. The experiment proceeds in three
phases:
• The PHMMs for reaching and pointing movements are

learnt.
• Human demonstrator shows to the robot which object

belongs to which hole. The robot associates each object
with the appropriate hole.

• Afterwards, the objects are placed again at arbitrary
positions. In this phase, the human points at one of

2Contrary to arctan(a/b), arctan2(a, b) ∈ (−π, π] respects the signs of
a and b.

the object, which is then identified and placed into the
associated hole using the previously learnt PHMMs. This
is repeated until all objects are removed.

To technically implement the placement of an object into
the appropriate hole, the robot first estimates the transfor-
mation between the robot and the camera coordinate system
by moving the hand of the robot to at least four different
configurations, which is enough to calculate the transformation
between two camera systems. After the object is identified, the
robot reaches for the object using the learnt PHMM. We use
here only a part of the interpolated movement corresponding
to the motion before the grasp. To be able to grasp the object,
the robot reaches towards the position in front of the object
(see Fig. 8). Relocating the object from the current position
on the table to the hole is accomplished by generating a
sequence of reaching positions on the table and using the
PHMM to generate the corresponding reaching movements for
these positions. The configurations where the robot reaches
for these positions are extracted and interpolated to generate
the relocation trajectory. In this way we ensure that the robot
uses only natural arm postures. Grasping and releasing of the
object is implemented using standard robotics methods. The
withdrawing movement is realized in the same way as the
reaching movement, the only difference being that in this case
we use the part of the trajectory after the grasp.

V. EVALUATION OF MOVEMENT REPRESENTATION

In the evaluation we focus our considerations on pointing
(see Fig. 1) and reaching actions, which are not only the
most important movements in our behavioral experiment but
are also important in other interaction scenarios. Both are
performed in a very similar way, starting and ending in the
same base position (arm along the body). The motion data of
our systematic evaluation is acquired using an eight camera
Vicon system with cameras running at 60 Hz (see Fig. 1). The
recognition and synthesis experiments are based on seven 3-
D points located at different segments of a human body. The
seven data points are: sternum; shoulder and elbow of the right
arm; knuckles, index finger, and thumb of the right hand.

Fig. 7. Our Experimental Setup. A person advises the robot HOAP-3 how
to clean up objects. Online Demo, available via web page [2].
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Fig. 8. Approach Motion along the x-axis to grasp an object

The exemplar positions at table-top form a regular raster,
which covers a region of 80cm × 30cm (width × deeps). For
training, a 3 × 3 raster is used, where 10 repetitions have
been recorded for each exemplar position and each action
type (pointing, reaching). For evaluation, a 5 × 7 test-raster
is used with 4 repetitions for each raster position to allow a
good evaluation statistic. All in all, for testing we used several
hundreds of movements.

A. Training: Setup of PHMMs

Training and setup of the exemplar PHMMs for grasping
and pointing is done as described in Sec. III-B1. We used
PHMMs of 20 states, where the hidden state sequences are
forced to stay between 4 and 6 time steps in each state. The
training sequences are normalized to 100 samples. We train
the PHMMs based on data of the full 3×3 raster (9 exemplar
HMMs) or based on a 2×2 raster, which consists of the four
outermost exemplar positions of the 3×3 raster at table-top.
These PHMMs will be refered in the following as 3×3 or 2×2
PHMM of reaching or pointing.

B. Synthesis

Synthesis is done as described in Sec. III-B2 with the setup
described in the section above. The performance of synthesis
is systematically evaluated by plotting the synthesis error
for each of the positions of the 5×7 test-raster. Therefore,
the error is based on the distance between each synthesized
movement and an average of the four test exemplars of a test-
raster positions. The averaging is done by training and re-
synthesizing from an 80 state HMM. Again, the re-synthesis
is a function f̄(t) = (f̄ i(i))7i=1 of “stacked” 3-D trajectories
f i(t) (elbow, wrist, . . . ). The final error ε is calculated as
the root-mean-square error between the time warped synthesis,
f(t), and re-synthesized average, f̄(t):

ε =

√√√√∫ 7∑
i=1

(f i(α(t))− f̄ i(ᾱ(t)))2

7
dt

/∫
α(t)dt, (25)

where α(t) and ᾱ(t) are warping functions. As the starting and
ending points of the reference f̄(t) sometimes vary slightly,
the first and last 10% of the sequences are not considered.
Obviously, the error ε is normalized w. r. t. the length of the
sequence.

The Fig. 9 (a), and (b) compare the synthesis errors of 2×2
and 3×3 exemplar PHMMs. Clearly, the performance in the
middle of the covered region increases, if the 3×3 PHMM

is used. Fig. 9 (c), and (d) show the fact that the results for
the reaching action are very similar to the pointing actions.
If the outer regions are neglected the synthesis errors are
approximately 1.8cm both in the case of reaching and pointing.

C. Recognition

For recognition, we evaluate (a) the performance of estimat-
ing the parameter of a movement, (b) the rate of the correct
classifications of movement types, and (c) the robustness to
noise.

First it is worth to take a look at Fig. 9 (e), which shows
that the optimization problem of maximizing the log likeli-
hood function l(u, v) = logP (X|λuv) given a movement is
tractable by standard optimization techniques (smoothness and
strict concavity). Thus, the most likely parameterization (u, v)
can easily be estimated. The errors for each position of the
5×7 test-raster are calculated as the average deviation of the
estimated position and the ground truth position for the test
example movements. The estimation accuracy of the table-top
positions behaves very similar to the results of the synthesis
Fig. 9 (f). The performance increases similar to the synthesis
in the inner region for our 3×3 PHMM compared to the 2×2
PHMM (not depicted). The rate of correctly classified types
of the 280 grasping and pointing test movements is 94% for
the 2×2 PHMMs, and changes just insignificantly for the 3×3
PHMMs.

We tested the robustness of estimating the parameters of
movements by adding Gaussian noise to each component of
the samples of the movements. Here, we realized no significant
influence for independently distributed noise with σ < 15cm.
Obviously, that is due to a large number of samples in the
sequence.

VI. CONCLUSIONS

We have presented a novel approach to represent, classify,
and imitate parametric movements using parametric hidden
Markov models. Our approach contains several contributions:
(a) how to learn and represent parametric human movements,
(b) how to use this representation for action recognition, (c)
how to transform and project the actions onto the embodiment
of the robot, and (d), how to generate the actions on a new
embodiment. Furthermore, we have solved several subprob-
lems such as multi-dimensional time warping of the multiple
training sequences so that HMMs can be properly interpolated.

We systematically evaluated the synthesis and recognition
performance of the proposed PHMM framework. The experi-
ments show the accuracy of our approach for the generation of
new movements and for the estimation of the associated move-
ment parameters (errors of ≈2cm). This shows that the newly
generated movements are similar to the observed movements.
This also was confirmed in the behavioral experiment of
Sec. IV-C, where the generated reaching movements were sim-
ilar to the training examples, and, like the examples, avoided
collisions with the table. This could not be guaranteed if the
movement was generated by standard robotics approaches. It is
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(a) Pointing Synthesis, 2×2 PHMM
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(b) Pointing Synthesis, 3×3 PHMM
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(c) Reaching Synthesis, 2×2 PHMM
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(d) Reaching Synthesis, 3×3 PHMM
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(f) Recognition of Pointing, 3×3 PHMM

Fig. 9. Error of Synthesis (a-d) and Recognition (f): evaluated at 7×5 raster positions for different PHMMs resolutions, a plot of the log likelihood for the
PHMM parameters (u, v) is given in (e).

worth to note that the synthesis error does not affect the robot-
object interaction since we interpolate based on the gripper
position which is encoded in the movements.

The classification rate of the type movement is ≈ 94%.
It is worth pointing out that this recognition rate is achieved
without any kind of diagnostic features. Furthermore, it should
be noticed that the movements of pointing and reaching are
very similar. In earlier experiments we had trained classical
HMMs on pointing and reaching actions where the training
movements were directed similarly (up to the natural variance
of human performances). During the tests, our classical HMMs
reached a recognition rate of ≈ 85%. The fact that the PHMMs
lead to considerably better recognition rates shows that they
are much better in describing the actions and in compensating
for natural variability of the performances.

We conclude that PHHMs are suitable for imitation because
they are both generative and accurate for recognition.
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