
9th IEEE-RAS International Conference on Humanoid Robots
December 7-10, 2009 Paris, France

Generalization of Example Movements with Dynamic Systems

Andrej Gams and Aleš Ude

Abstract— In the past, nonlinear dynamic systems have been
proposed as a suitable representation for motor control. It
has been shown that it is possible to learn desired complex
control policies by a nonlinear transformation of an existing
simpler control policy, which is based on a canonical dynamic
system. The resulting control policies were termed dynamic
movement primitives. The main result of this paper is an
approach to learning parametrized sets of dynamic movement
primitives based on a library of example movements. Learning
was implemented by applying locally weighted regression where
the goal of an action is used as a query point into the library
of example movements. The proposed approach enables the
generation of a wide range of movements that are adapted to the
current configuration of the external world without requiring
an expert to appropriately modify the underlying differential
equations to account for percepetual feedback.

I. INTRODUCTION
Learning of robotic behaviors that involve manipulation

of objects placed at arbitrary locations in the 3D world is
difficult because the search space that needs to be explored is
potentially huge. It depends both on the number of degrees of
freedom of the robot and on the objects directly or indirectly
involved in the action. Overcoming the problems arising from
high dimensional and continuous perception-action spaces
requires reducing the search space, for example by guiding
the search process. An effective way is to design a model
of the task and learn the specified parameters. However,
this relies on externally provided knowledge, e.g. by an
engineer, and is therefore unsatisfactory for robots that need
to autonomously operate in unstructured environments and
have to constantly solve new scenarios. A cognitive robotic
system needs to be able to acquire new skills without relying
on the presence of the expert.

Autonomous exploration, as one of the ways to acquire
new action knowledge, is often studied in the field of devel-
opmental robotics [1]. Imitation, as another, also often joined
with coaching and practicing, assumes that initial knowledge
is available to the robot, often in the form of motor primitives
[2]. For example, direct imitation has been successfully ap-
plied to learn complex movements on humanoid robots such
as dancing, which would be difficult to program manually
[3], [4], [5]. Periodic tasks can be performed with imitation
by applying appropriate mechanisms that synchronize the
motion to a perceptual input [6], [7]. Direct imitation is, how-
ever, not useful in object manipulation problems because the

This work was supported in part by the EU Cognitive Systems project
PACO-PLUS (FP6-027657)

A. Gams is with Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia, andrej.gams@ijs.si

A. Ude is with Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubl-
jana, Slovenia, and ATR Computational Neuroscience Laboratories, 2-2-2
Hikaridai, Soraku-gun, Kyoto 619-0288, Japan ales.ude@ijs.si

observed movements need to be adapted to the current state
of the 3-D world. It is highly unlikely that an appropriate
movement would be observed in advance and included in
the library of observed movements for any given situation.
A methodology to generalize the observed movements to
new situations was proposed by Miyamoto et al. [8] who
developed a new representation for the desired trajectory,
which they referred to as via-points.

The work of Miyamoto et al. [8] shows the importance of
a proper representation for the control policy. Other explicit,
time-dependent representations include splines, which were
utilized in [9] to generate new actions from a library of
example movements. Hidden Markov models (HMMs) are
another popular methodology to encode and generalize the
observed trajectories [10], [11], [12]. While techniques that
enable the reproduction of generalized movements from
multiple demonstrations have been proposed within HMM
formalism, generalization across movements to attain an
external goal of the task is not central to these works. HMMs,
however, can be used effectively for motion and situation
recognition [12] and to determine which control variables
should be imitated and how [11].

A fundamentally different approach to movement repre-
sentation based on nonlinear dynamic systems as policy
primitives was proposed in [13], [14], [15], [16]. The result-
ing primitive movements were termed as dynamic movement
primitives (DMPs). DMPs are based on systems of second-
order differential equations, which encode the properties of
the desired motion. Ijspeert et al. [13], [14] proposed equa-
tions for rhythmic and discrete movements and demonstrated
that they can be used to learn tasks such as tennis strokes
and drumming. Rhythmic pattern learning was extended
to patterns of undetermined frequency in [7]. One of the
most important advantages of DMPs is that they remove
the direct dependency of the control policy on time. As
noted in [16], explicit timing is cumbersome, as it requires
maintaining a clocking signal, e. g., a time counter that
increments at very small time steps. By removing explicit
time dependency, DMPs can easily account for unforeseen
perturbations that occur during movement execution without
extensive bookkeeping. Another aspect of the approach is
the ability to modulate and generalize the learned motion in
shape, length and final goal by changing only a small number
of parameters [16]. This, however, changes the properties and
specific features of the learned motion. Approaches to reduce
the change of the modulated motion are described in [17],
[18]. A type of generalization between motor primitives is
described in [19].

The main purpose of this paper is to propose and ex-

978-1-4244-4588-2/09/$25.00 ©2009 IEEE 28

perimentally evaluate a method for generalizing example
movements to new situations using the dynamic movement
primitives as basic representation. While DMPs can be
adapted in several ways, generic adaptations cannot account
for specific features of the task. The approach proposed in
this paper enables the generation of DMPs using a library
of example movements together with associated goals of
the task and/or other relevant features, which are utilized
as query points for generalization.

II. MOTION TRAJECTORIES AS SECOND ORDER DYNAMIC
SYSTEMS

Dynamic movement primitives have been introduced in.
[13], [14] as means for trajectory generation and modulation.
To encode the trajectory of a single variable y, which can
either be one of the internal joint angles or one of the
external task space coordinates, the following system of
linear differential equations with constant coefficients has
been proposed as a basis for approximation [16]

τ ż = αz(βz(g− y)− z), (1)
τ ẏ = z. (2)

Here y is the trajectory and αz and βz are positive constants.
τ defines the time-length of the DMP. The system is critically
damped for αz = 4βz. Differential equations (1) – (2) ensure
that y converges to the goal g and can therefore be used
to realize discrete reaching movements. Schaal et al. [16]
proposed to add a linear combination of radial basis functions
to (1)

f (x) = ∑
N
i=1 wiΨi(x)

∑
N
i=1 Ψi(x)

x, (3)

Ψi(x) = exp
(
−hi (x− ci)

2
)

. (4)

Variables Ψi and wi present the basis functions and the
weights associated to them, respectively. The parameter hi >
0 represents the width of the basis functions, N their number,
and ci, i = 1...N is equally spaced on x. A new variable x is
used in (3) and 4) instead of time to avoid direct dependency
of f on time; the dynamics is governed by

τ ẋ =−αxx, (5)

with initial value x0 = 1. A solution to (5) is given by
exp(−αxt/τ), thus x tends to 0 as time increases. This results
in the following differential equation system

τ ż = αz(βz(g− y)− z)+ f (x) (6)
τ ẏ = z, (7)

which can be used to approximate discrete movements of
various shapes. The role of x is also to localize the radial
basis functions along the trajectory that needs to be approxi-
mated. The trajectory y as specified by (5) – (7) defines what
is called a dynamic movement primitive (DMP).

III. MOTION GENERALIZATION WITH DYNAMIC
MOVEMENT PRIMITIVES

There exists a number of modifications to this equation
system in the literature; e. g. Pastor et al. [17], [18] proposed
to add terms that enable obstacle avoidance and sequencing
of DMPs. These approaches demonstrate why DMPs are
useful, but they also require a qualified person to modify
the basic equation system in order to adapt the movements
to new situations. The main contribution of this paper is
an approach that enables modifying the learned trajectories
directly from the data, while still encoding the desired
movements with dynamic systems.

Dynamic movement primitives are most commonly gener-
ated from demonstration trajectories, which are usually ac-
quired by guiding a robotic arm through a sequence of poses
or by observing human motion and transforming it to robot
motion , see for example [13]. Let {yd(t j), ẏd(t j), ÿd(t j)},
t j = j∆t, j = 0, . . . ,T, denote a set of positions, velocities and
accelerations of the desired trajectory at times t j. Replacing
z in (6) by y results in the following set of equations that
need to be solved to calculate a DMP that best fits the data

F(t j) = τ
2ÿd(t j)+αzτ ẏd(t j)−αzβz(g− yd(t j))

=
∑

N
i=1 wiΨi(x j)

∑
N
i=1 Ψi(x j)

x j, (8)

where x j = x(t j) = exp(−αxt j/τ). Note that as we consider
one-shot learning, we have to assume smooth and derivable
demonstration trajectories without perturbations that are not
part of the original movement. This allows using the ana-
lytical solution of (5). In the execution phase, on the other
hand, we can still use a modified version of (5) proposed in
[13], which enables the trajectory generation system to deal
with unforeseen perturbations. In matrix form we have

Xw = f, (9)

where

X =


Ψ1(x1)

∑
N
i=1 Ψi(x1)

x1 . . . ΨN(x1)
∑

N
i=1 Ψi(x1)

x1

.
Ψ1(xT)

∑
N
i=1 Ψi(xT)

xT . . . ΨN(xT)
∑

N
i=1 Ψi(xT)

xT

 ,

f =

 F(t1)
. . .

F(tT)

 , w =

 w1
. . .
wN

 .

In the equations above, just as in (1) and (2), αx, αz and βz
are constant, g is the desired final position or goal, and τ

is set to the time duration of the example movement. What
needs to be estimated are the parameters wi, ci and hi. Schaal
et al. [16] applied locally weighted projected regression to
estimate all these parameters, while other approaches just
fix the number of radial basis functions (N) and their extent
(hi) and estimate parameters wi using regression methods
[13]. Locally weighted recursive least squares have proved
to be especially useful for incremental learning of rhythmic
movements [14], [7].

29

A. Locally weighted regression

In this paper we show how to generalize DMPs to situa-
tions that were not recorded in the example database. We call
the process Locally weighted regression. The term denotes
a common regression technique with which we estimate the
parameters of motion from a library of motions.

Lets assume that we have a number of example movements
{yk

d(t j), ẏk
d(t j), ÿk

d(t j)}, t j = j∆t, j = 0, . . . ,Tk, k = 1, . . . ,M,
with associated query points qk and time constants τk. In
the example of reaching movements, the query points can
be just the final reaching goal g = (g1, . . . ,gn), where n is
the dimension of the parameter space. For other movements,
query points can differ from g. Even in the case of reaching
movements, the query points can be given in Cartesian
space, while the DMPs might be encoded in the joint space.
The issue is how to generate a DMP representing a new
movement for every query q, which in general will not be one
of the examples qk. A rather trivial solution would be to look
for a qk closest to q, but locally weighted regression enables
us to compute a better solution by minimizing criterion

M

∑
k=1
‖Xkw− fk‖2 K(d(q,qk)), (10)

where K is the kernel function for locally weighted regres-
sion and d is the metrics in the space of query points q.
Note that even if g of (6) is taken to be the query point – as
could be done in the case of reaching movements – it is still
worthwile to calculate new DMPs by minimizing criterion
(10). This way we can ensure that the new movement
has similar properties and specific features to the example
movements. Although every DMP eventually converges to
g, the course of the trajectory becomes significantly different
if the new movement is generated by a DMP whose other
parameters were calculated using an example with a sig-
nificantly different g (see Section IV-A). Locally weighted
regression has been thoroughly studied in [20]. It is a form
of lazy learning where the computational cost of training
is minimal; it simply consists of storing examples in the
database.

Unlike αx, αz, βz, N, ci and hi, which are kept constant
across the example trajectories1, time constant τ and the goal
position g change from example to example. We propose to
calculate these parameters from the data as a function of the
query point q. Writing

τ = fτ(q) =
Sτ

∑
i=1

a′iB
′
i(q), (11)

g = fg(q) =
Sg

∑
i=1

a′′i B′′i (q), (12)

where B′i and B′′i are a suitable set of basis functions, pa-

1N, ci and hi, i = 1, . . . ,N, are estimated in a preprocessing step so that
every DMP approximates the associated motion trajectory at least up to
the predefined accuracy. It is possible to use locally weighted projected
regression for this purpose.

rameters a′i and a′′i are estimated by respectively minimizing

M

∑
k=1
|fτ(qk)− τk|2 and (13)

M

∑
k=1

∥∥fg(qk)−gk
∥∥2

. (14)

We selected B-splines as basis functions for the approxi-
mation of g and τ . Note that in the training phase, the
original τk and gk are used to calculate Fk(t j) defined by
(8). In the execution phase, new τ and g are estimated using
transformation functions (11) and (12).

The computational complexity of solving the least squares
system given by (10) is O(N2

∑
M
k=1 Tk) and thus increases

linearly with the number of data points and quadratically with
the number of radial basis functions (4) used to represent
the DMP. The quadratic dependence on the number of basis
functions is not a problem because this number is generally
much lower than the number of data points. The complexity
is further reduced because Xk are sparse due to the local
support of radial basis functions. These facts make compu-
tational complexity low enough to allow resolving the least-
squares problem (10) using standard methods from sparse
matrix algebra and without resorting to the approximation of
w by local models as implemented in [13], [14]. Incremental
learning using recursive least squares is also possible.

The proposed approach is appropriate only if example tra-
jectories smoothly transition as a function of query points. If
this is not the case, nearby data does not provide information
about the movement associated with the query point q. The
above process estimates the parameters w,τ,g, which means
that the function

F(q) = (w,τ,g) (15)

needs to be smooth.
There are many possibilities to select the weighting func-

tion K [20]. We chose the tricube kernel

K(d) =
{

(1−|d|3)3 if|d|< 1
0 otherwise (16)

This kernel has finite extent and a continuous first and second
derivative. Combined with distance d in the space of query
points, these two functions determine how much influence
each of the example movements {yk

d(t j), ẏk
d(t j), ÿk

d(t j)}, t j =
j∆t, j = 0, . . . ,Tk, has. It is easy to see that the influence of
each example movement diminishes with the distance of the
query point q from the data point qk. In our experiments
the query points were given in Euclidean space and we used
weighted Euclidean distance to define d

d(q,qk) = ‖D(q−qk)‖, D = diag(ai), ai > 0. (17)

Other metrics could be applied if query points are given
in different spaces such as for example the special rotation
group.

30

−1.5 −1 −0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
ROBOT END−EFFECTOR CARTESIAN PATH

x (meters)

y
(m

et
er

s)

Fig. 1. 45 example minimum jerk trajectories of robot end-effector path in
Cartesian space. Red circles depict the final reaching positions that were
used as query points for locally weighted regression. The sum of limb
lengths was 1.31 meters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−4

−3

−2

−1

0

1

2

3

time (seconds)

jo
in

ts
 (r

ad
ia

ns
)

Fig. 2. 45 example joint space trajectories associated with the minimum
jerk reaching trajectories in Fig. 1.

IV. EXPERIMENTS

We examined how well we can approximate Cartesian
minimum jerk trajectories of a robot end-effector, which
resemble human reaching trajectories [21], by generating
DMPs based on the library of example movements given in
the robot joint space and using locally weighted regression.

A. Simulated study

In the simulated study we used a planar 2R robot, for
which we we first generated Cartesian minimum jerk trajec-
tories that correspond to straight lines. We converted them
into joint space trajectories using standard inverse kinematics
(see Figs. 1 and 2). The final end-effector positions on the
trajectories were used as query points qk, k = 1, . . . ,M,
whereas the initial position was the same for all trajectories.
We distributed the query points uniformly with spacing of
0.1 meters in a rectangular area with corners at (0.2,−0.5)
and (0.6,0.3) meters. Joint velocities and accelerations were
computed analytically.

We used B-splines to estimate the mapping (12), which is
in this case the mapping from the last end-effector position

TABLE I
ERRORS IN REACHING MOVEMENTS (IN CENTIMETERS AND DEGREES,
RESPECTIVELY) SYNTHESIZED BY LOCALLY WEIGHTED REGRESSION.

Joint space Cartesian space Grid size

(across trajectory) (final pos. err.) (cm)

Training Full Reduced Full Reduced

Average err. 0.24 0.19 0.12 0.09 10×10

Max. error 0.97 0.46 0.47 0.30 10×10

TABLE II
ERRORS IN REACHING MOVEMENTS (IN CENTIMETERS AND DEGREES,

RESPECTIVELY) GENERATED BY A SINGLE DMP.

Joint space Cartesian space Grid size

(across trajectory) (final pos. err) (cm)

Training Full Reduced Full Reduced

Average err. 8.85 5.62 0.43 0.32 10×10

Max. error 22.47 13.88 0.97 0.77 10×10

to the corresponding joint angles and is thus a local approxi-
mation for the inverse kinematics. Similarly we estimated the
mapping (11) from query points q to the time duration of
the trajectory. In simulation the time duration was assumed
to depend on the distance of the end effector’s final position
from its initial position on the trajectory.

The errors in Tab. I and II were calculated by integrating
(5) – (7) to obtain joint positions ỹ(t j), and comparing
the result with the ideal minimum jerk trajectory y(t j)
expressed in the robot joint space. These ideal trajectories
were calculated using the same formulas as in the calculation
of the training examples. Both average (18) and maximum
error (19) on the trajectory were evaluated

1
N

N

∑
j=0
‖ỹ(t j)−y(t j)‖, (18)

N
max
j=0
‖ỹ(t j)−y(t j)‖. (19)

Results in Tab. I prove that reaching movements can be
approximated by locally weighted regression and DMPs with
high precision. Since it can be expected that the errors will
be larger on the boundary of the training query points qk,
we estimated the error both within the full rectangular area
enclosed by all query points of Fig. 1, and in the reduced
area enclosed by query points situated at least one query
point away from the boundary points. As expected, the errors
are smaller for the internal points. The resulting trajectory
accurately reproduced both the spatial course of movement
and its dynamics. In this experiment the Cartesian positions
were used as query points, which were then mapped to
the goal configurations using the estimated spline function
(12). This function partially approximates the inverse kine-
matics as relevant for the task. Thus with the proposed
approach we can generalize reaching movements in Cartesian
space without knowing the inverse kinematics of the robot.

31

0

0.05

0.1

0.15

−0.1

−0.05

0

0.05

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

P11

P0

x [m]

P51

P55

P15

REB

y [m]

RGH

z
[m

]

Fig. 3. Grid and trajectories for the HOAP-3 robot reaching example. The
goals are marked with red dots, the starting point with a green dots and the
trajectories with blue lines. The robot’s arm with glenohumeral (RGH) and
elbow (REB) joint is in yellow.

The accuracy is sufficient to realize high-precision reaching
movements for grasping.

Tab. (II) shows that representation with only one DMP is
too rough for precise movement reproduction. While the final
position could be reached fairly accurately within the given
time due to the properties of discrete movement primitives,
the trajectory reproduction accuracy (18) is worse by an order
of magnitude compared to the precision of the approach
based on locally weighted regression. In both cases the
trajectory did not fully reach the final destination because
time was not allowed to flow beyond τ estimated by (11). If
we allowed the time to flow and continued to integrate the
underlying differential equations, the motion would continue
and the desired position would eventually be reached, yet
with a certain delay.

B. Real world experiments

We tested the same reaching study on a humanoid
HOAP-3 robot. We recorded a set of 25 demonstration
reaching movements, that served as our library of ex-
ample movements. All the movements originated from
a predefined starting position (P0) and ended on a grid
roughly in the coronal plane of the robot, 0̃.15 m in
front of the robot. The final reaching goals were on a
grid with corners at P11 = (0.167,−0.055,−0.089), P15 =
(0.153,0.059,−0.106), P51 = (0.127,−0.060,0.024) and
P55 = (0.117,0.044,0.011) meters from the right gleno-
humeral joint (RGH). The grid and the task space trajectories
of the movements are presented in Fig. 3.

Just as in the simulated experiments, we estimated the
mapping from the last end-effector to the corresponding joint
angle, in this case 4 joint coordinates were used. Again
we estimated the mapping (11) from query points q to the
time duration of the trajectory. The time duration was also

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

t [s]

q
[r
ad

]

Fig. 4. Real-world experiment results. For a random query point the learned
joint trajectories (bold) resemble the trajectories of the nearest point (solid)
in the grid. Results using a DMP with a changed goal (dotted) reach the
final goal yet do not preserve the specifics of the motion.

assumed to depend on the distance of the end effector’s
final position from its initial position on the trajectory, just
as in simulation. Fig. 4 shows the real world experiment
results that show that the generalized movement preserves
the specific movement features better than a single DMP.

V. SUMMARY AND CONCLUSION

In the paper we propose a movement generalization
approach realized using locally weighted regression that
defers learning to the execution time. Contrary to many
other approaches to modifying DMPs with respect to the
perceptual input that require an expert in order to modify
the underlying system of differential equations, our approach
uses perceptual input as the query into the data and generates
the movements directly. The computing time necessary to
generate a DMP given a particular query point depends
linearly on the number of query points and the number
of samples associated with each example movement. Since
the weighting criterion has finite support, the number of
example trajectories involved in the generation of each DMP
remains limited. Therefore the increase in the computing
time required for locally weighted regression compared to
the computing time needed for standard one-shot learning of
discrete DMPs is also limited. An efficient implementation
is, however, very important if DMPs are to be generated on-
line using current perceptual input.

The experimental results show that by using DMPs and
locally weighted regression, we can accurately approximate
a space of smooth movements, e. g. minimum jerk reaching
movements. While locally weighted regression can be ap-
plied to other representations such as B-splines [9], it has
been shown that in the execution phase, dynamic systems
have many advantages. This is due to the robustness to
perturbations [14], [16]. The proposed approach enables
execution of nearly optimal trajectories when there are no
disturbances, while keeping the ability to easily adapt the
trajectories if necessary. On the other hand, if precision
is paramount and any perturbations would lead to failure,
for example pure feedforward movements that constitute
throwing, splines might be preferable because they do not
suffer from problems associated with the integration.

32

Fig. 5. A sequence of stills showing the teaching (top) and the execution of the generalized movement to a goal within the grid of the example movements.

The generalization of movements (Section III-A) makes
sense only for problems with example movements that tran-
sition smoothly as a function of query points, which is not
always the case. If reaching movements need to avoid an
obstacle before arriving to the final configuration, and there
are two sets, each avoiding the obstacle from a different
side, then example movements that avoid the obstacle from
different sides should not be blended together. In such cases
the approach described in this paper can still be used, but it
should be supplemented by a suitable clustering procedure
which must be guided by higher level cognitive processes.

REFERENCES

[1] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini.
Developmental robotics: a survey. Connection Science, 15(4):151–
190, 2003.

[2] Stefan Schaal. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233–242, 1999.

[3] M. Riley, A. Ude, and C. G. Atkeson. Methods for motion generation
and interaction with a humanoid robot: Case studies of dancing
and catching. In Proc. 2000 Workshop on Interactive Robotics
and Entertainment, pages 35–42, Pittsburgh, Pennsylvania, April/May
2000.

[4] Aleš Ude, Christopher G. Atkeson, and Marcia Riley. Programming
full-body movements for humanoid robots by observation. Robotics
and Autonomous Systems, 47(2-3):93–108, 2004.

[5] Miti Ruchanurucks, Shinichiro Nakaoka, Shunsuke Kudoh, and Kat-
sushi Ikeuchi. Humanoid robot motion generation with sequential
physical constraints. In Proc. IEEE Int. Conf. Robotics and Automa-
tion, pages 2649–2654, Orlando, Florida, 2006.

[6] Andrej Gams, Leon Žlajpah, and Jadran Lenarčič. Imitating Human
Acceleration of a Gyroscopic Device. Robotica, 25(4):501–509, 2007.

[7] Andrej Gams, Auke J. Ijspeert, Stefan Schaal, and Jadran Lenarčič.
On-line learning and modulation of periodic movements with nonlinear
dynamical systems. Autonomous Robots, 2009, DOI 10.1007/s10514-
009-9118-y.

[8] Hiroyuki Miyamoto, Stefan Schaal, Francesca Gandolfo, Hiroaki
Gomi, Yasuharu Koike, Reiko Osu, Eri Nakano, Yasuhiro Wada, and
Mitsuo Kawato. A kendama learning robot based on bi-directional
theory. Neural Networks, 9(8):1281–1302, 1996.

[9] Aleš Ude, Marcia Riley, Bojan Nemec, Andrej Kos, Tamim Asfour,
and Gordon Cheng. Synthesizing goal-directed actions from a library
of example movements. In Proc. IEEE-RAS Int. Conf. Humanoid
Robots, Pittsburgh, Pennsylvania, December 2007.

[10] Tamim Asfour, Florian Gyarfas, Pedram Azad, and Rüdiger Dilmann.
Imitation learning of dual-arm manipulation tasks in humanoid robots.
International Journal of Humanoid Robotics, 5(2):183–202, 2008.

[11] Aude Billard, Sylvain Calinon, and Florent Guenter. Discriminative
and adaptive imitation in uni-manual and bi-manual tasks. Robotics
and Autonomous Systems, 54:370–384, 2006.

[12] Tetsunari Inamura, Iwaki Toshima, Hiroaki Tanie, and Yoshihiko
Nakamura. Embodied symbol emergence based on mimesis theory.
Int. J. Robotics Research, 23(4-5):363–377, 2004.

[13] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement
imitation with nonlinear dynamical systems in humanoid robots. In
Proc. IEEE Int. Conf. Robotics and Automation, pages 1398–1403,
Washington, DC, 2002.

[14] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor
landscapes for learning motor primitives. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 1547–1554. MIT Press, Cambridge, Mass., 2003.

[15] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning
movement primitives. In P. Dario and R. Chatila, editors, Robotics
Research: The Eleventh International Symposium, pages 561–572,
Berlin, Heidelberg, 2005. Springer.

[16] Stefan Schaal, Peyman Mohajerian, and Auke Ijspeert. Dynamics
systems vs. optimal control – a unifying view. Progress in Brain
Research, 165(6):425–445, 2007.

[17] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal.
Learning and generalization of motor skills by learning from demon-
stration. In Proc. IEEE Int. Conf. Robotics and Automation, Kobe,
Japan, 2009 (to appear).

[18] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
Movement reproduction and obstacle avoidance with dynamic move-
ment primitives and potential fields. In Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Daejeon, Korea, 2008.

[19] Jan Peters, Jens Kober, Katharina Muelling, Duy Nguyen-Tuong, and
Oliver Kroemer. Towards motor skill learning for robotics. In
Proc. Intrnational Symposium on Robotics Research (ISRR), Lucerne,
Switzerland, 2009.

[20] Christopher. G. Atkeson, Andrew W. Moore, and Stefan Schaal.
Locally weighted learning. AI Review, 11:11–73, 1997.

[21] Tamar Flash and Neville Hogan. The coordination of arm movements:
an experimentally confirmed mathematical model. The Journal of
Neuroscience, 5(7):1688–1703, 1985.

33

