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Abstract— In this paper we present a method for learning new 
objects situated in uncontrolled and unstructured 
environments. Visual information only is usually not sufficient 
for a reliable segmentation and learning of unknown objects 
without any a priori information. We propose an approach in 
which the robot introduces additional information by 
manipulating the entities in the scene, thus generating sufficient 
information to identify objects and accumulate knowledge 
about them. Our approach involves the extraction of local 
feature ensembles that provide hints about the existence of an 
object, the generation of pushing movements to confirm or 
reject the initial hypothesis, and the fusion of features that 
satisfy the assumed motion constraints. To ensure the 
robustness of the system, probabilistic methods such as 
RANSAC (RANdom SAmple Consensus) are used in several 
computational stages. Our experimental results show that the 
system is successful at segmenting objects in complex scenes. 
The segmented features can be accumulated across different 
views to extract more comprehensive knowledge about the 
objects.  

I. INTRODUCTION 
Image segmentation methodologies differ in their 

assumptions and in the level of prior knowledge they utilize. 
When complete object models are known, the system is in 
fact performing object detection and recognition. When no a 
priori knowledge about the data present in the image is 
available, we need some kind of model-free approach to 
segmentation. However, visual information is often not 
sufficient for a reliable and accurate segmentation of random 
heaps of unknown objects [36].  Such a situation is presented 
in Fig. 1. 

Humans are very successful at finding objects in complex 
scenes, even if they have never seen them before. This 
ability has proven to be very difficult to replicate by passive 
vision systems, mainly because it is hard to define what 
exactly constitutes an object. The meaning of the word 

“object” is very broad and dependent on semantics and 
context [6]. While many different principles can be found, 
e.g. closure, connectedness, bilateral symmetry [16], co-
planarity and co-linearity of contours [14], etc., 
counterexamples can be found for each of them. Hence such 
basic principles can be applied only to generate hypotheses 
about the existence of the objects, whereas to confirm such 
hypotheses, additional paradigms need to be applied. The 
hierarchical composition of simpler features into more 
complex entities that become sparser in the image, thus 
enabling fast and robust classification, has been explored for 
this purpose in the vision literature [8]. 

Besides passively observing a scene, a robot can explore 
the world and learn from the effect its actions have on the 
external world [21], much like humans explore objects to 
control the visual input. Active exploration should enable the 
separation of objects from the background, something that is 
not trivial when passively observing an object in scenes with 
a highly cluttered background [13][22]. For example, 
moving an object can help to extract object boundaries, 
which is useful for segmentation, even when the motion is 
short and poorly controlled [10]. 

To move an object, the robot can either apply pushing 
movements or transport it in its hand, which assumes that the 
object can be grasped. While grasped objects can be 
controlled better than pushed objects, grasping is a more 
expensive operation. Nevertheless, systems exist that 
demonstrate such behavior [32]. These systems attempt to 
identify features points in two (or more) snapshots of an 
object corresponding to good locations at which the object 
can be grasped. In [14], the rigid body motion principle is 
used to fuse features across views. The information gained 
by the manipulation of grasped objects is utilized in [38] to 
support model-free segmentation and accumulation of 
snapshots from different viewpoints. 

 
Fig. 1: Segmentation of unknown objects. Original image (640x480) on the left, extracted edges (Canny edge detector, threshold 0.01) in the 
middle, and extracted SIFT features on the right. 
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In many cases it is difficult to grasp an unknown object, 
either because of its size or because of the peculiarities in its 
shape. Pushing is a suitable alternative in such cases because 
it is easier to apply but, if successful, also causes the object 
to move, thus providing additional information for object 
segmentation. Pushing (or poking) has been used to acquire 
affordances of previously unknown objects [21]. 

Here we focus on the extraction of geometric information 
supported by pushing actions. Pushing actions are 
synthesized from object hypotheses generated from clusters 
of local image features. We show that applying pushing 
actions to the generated object hypotheses provides a 
sufficient amount of information to separate the objects from 
the background and acquire its features. The implemented 
system can cope with multiple objects, overlap and clutter. 
Finally, our system can accumulate object features from 
multiple views. 

A. The outline of the approach 
The basic building blocks of our system are the following 

procedures:  

• Generation of object hypotheses: Features are 
extracted from stereo images and put into 
correspondence by comparing feature vectors and 
using epipolar geometry. These matches allow us to 
calculate 3-D feature points. The set of 3-D points is 
investigated for occurrences of regular surfaces such 
as planes. The extracted and ranked hypothetical 
surfaces are used to generate actions for manipulation. 

• Object manipulation: An action, e.g. a push, is applied 
to the hypothetical surface to provide additional 
information for building complete and verified object 
descriptions.  

• Evaluation of hypotheses: This process establishes 
correspondences between 3-D feature points, estimates 
the parameters of the induced object motion, and 
verifies whether the hypothetical object features move 
as expected for features associated with an object. 
Some features can be excluded and other added based 
on the results of the verification process.  

Note that if any of these processes fails, the system can 
generate and verify additional hypotheses. Hence we do not 
need to assume that the outcomes of our image processing 
algorithms are perfect, which makes our system robust. 

Studies have shown that systems based on local, partially 
invariant features are able to recognize objects from multiple 
viewpoints and also detect these objects in cluttered scenes 
[7][17][30][27]. Object recognition can often be understood 
as a feature matching problem with essentially three phases: 
detecting, describing and matching features. There are plenty 
of options for a feature detector. Existing detectors are based 
on affine normalization around Hessian and Harris points 
[24], difference of Gaussians (DoG) [17], edges [37], 
intensity extrema [37], ‘maximally stable extremal regions’ 
[20] or ‘salient regions’ [28]. Evaluation of feature detectors 
[25] shows that performance of detectors depends on the 
application and the associated image content, which 
determines for instance the robustness, accuracy, and density 

of features. Evaluation of descriptors [23] such as steerable 
filters [11], differential invariants [34], complex filters [33], 
moment invariants [39] and cross-correlation for different 
types of interest points, Scale Invariant Feature Transform 
descriptor (SIFT) [17] shows that the latter often performs 
best. Similarly, evaluation on 3-D objects [27] shows that 
SIFT descriptor performs well compared to other descriptors. 
For this reason, we selected SIFT descriptors with the 
difference of Gaussians as a feature detector as basis for the 
processing of the acquired images. The choice of detectors 
and descriptors does not influence the implementation of the 
methods proposed in this paper. Other detectors and 
descriptors could be used if required by the application. 

In the proposed approach, object hypotheses are formed 
by estimating parameters of hypothetical planes in the scene 
and evaluated by verifying whether associated features 
moved as a rigid body would after the application of the 
pushing action.  Both processes, i.e. generation and 
evaluation of hypotheses can be subject to a significant 
amount of outliers in the data set. To ensure robustness, we 
employ the RANSAC algorithm [9] known for its ability to 
perform robust estimation of model parameters. 

In our system we match the local features acquired before 
and after the pushing action. In principle it is possible to 
continuously track the pushed object features, which 
minimizes the differences between the consecutive views, 
thus reducing the possibility of loosing the features due to 
large viewpoint changes. Unfortunately, in our application 
there is a high probability that the robot’s arm occludes the 
object while executing the pushing motion. Since the 
complete geometry of the object to be pushed is not available, 
it is impossible to ensure pushing without occlusion, i.e. only 
side pushing. The generation of hypotheses is based on 
visible features, therefore the manipulation is focused on 
these features and occlusions are highly probable, which 
makes continuous tracking impractical.  

The rest of the article is organized as follows. Section II 
describes the formation of hypotheses about the objects. In 
Section III we describe the planning of robot motion to 
generate pushing actions. This is followed by the evaluation 
of hypotheses based on the resulting changes in the scene. In 
Section V we present the results of experiments performed to 
evaluate the implemented system. We also tested the 
accumulation of object knowledge across viewpoints after 
consecutive pushing actions. Section VI discusses the 
potential and limitations of the proposed algorithm and 
concludes the paper. 

II. OBJECT HYPOTHESES 
We start by proposing a methodology towards the 

formation of hypotheses for the generation of manipulative 
actions that can be applied to induce object motion. For 
reasons given above, any such methodology needs to make 
decisions with respect to the type of features and objects that 
can be expected in the scene. Note that in our system these 
are just the initial hypotheses that can later be objectively 
confirmed by manipulation. In the following we focus on 
household environments. Households contain many objects 
with planar surfaces, hence one type of objects we are 
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interested in are objects with some planar surfaces. With 
respect to the planarity constraint, four points are not in 
general position if they fall on a plane. Our basic strategy is 
to look for groups of features that fulfil certain hypotheses, 
e.g. planarity constraint, and apply robot manipulation 
actions to move the object associated with the detected 
ensembles of features and confirm or reject the hypothesis. 
In this way hierarchical interpretation of visual data can be 
simplified and objects can be found with less prior 
assumptions.  

We selected SIFT features as a basic visual representation. 
Besides being powerful interest point detectors [23][27], 
SIFT descriptors have also proven to be robust against 
moderate rotations in the scene (up too thirty degrees [19]), 
which allow the system to match the descriptors before and 
after the object has moved. A SIFT descriptor is computed 
from gradient information around the keypoint region. Local 
appearance is described by histograms with 8 bins for each 4 
x 4 subregion of a 16 x 16 region around the keypoint, which 
results in a 128-dimensional feature vector.  

For a stereo pair of images, a set of matching features can 
be determined on the basis of Euclidean distance between 
SIFT descriptors by best-bin first algorithm [17]. The best 
candidate match for a SIFT feature is its nearest neighbor, i.e. 
the feature with a minimum Euclidean distance between 
descriptor vectors. Some of these initial matches could be 
incorrect due to 1) ambiguous features, 2) features that arise 
from background clutter or 3) features that were not detected 
in the first image. We refine the search for corresponding 
points by taking into account the epipolar geometry [12]. 
Intrinsic camera parameters are acquired by a standard 
calibration procedure; hence we can capture this geometric 
constraint in an algebraic representation known as the 
essential matrix  
 0T

i ij jE =u u . (1) 
ui = [xi, yi, 1]T, uj = [xj, yj, 1]T are the image locations of the 
SIFT descriptor and E is the essential matrix. 

The next step is finding features that belong to planar 
parts of the scene. Various algorithms for plane detection 
have been proposed. While it is possible to detect planes 
without computing the 3-D information explicitly, for 
instance with disparity maps [35], our approach anticipates 
3-D information to generate manipulation actions and we 
therefore exploit 3-D information for plane detection. 3-D 
information is also needed for fusing features across views.  

Occurrences of co-planarity are determined with the 
RANSAC algorithm. Tolerance tP indicates the maximum 

allowable absolute distance between a point and the 
hypothetic plane: 

 0ax by cz d+ + + = . (2) 
 Since no prior assumptions about the environment were 

made, the planes can incorporate features that in fact belong 
to different objects or background. To ensure successful 
manipulation, we group the features of every plane using X-
means clustering [30], which is an extended K-means 
algorithm that includes the estimation of the number of 
clusters. This process is presented in Fig. 2. 

 To evaluate the generated hypotheses we need to 
determine specific robot movements that are likely to cause 
the object associated with the detected features to move. We 
rank the clusters of planar features by the number of features 
associated with them. Such hypotheses are more likely to 
lead to success and we therefore start with a cluster with the 
highest number of features and generate a suitable pushing 
motion (see next section). Not every pushing motion will be 
successful, e.g. attempts to push the planes belonging to 
objects that cannot be moved will fail. If the generated 
pushing motion is not successful, i.e. the verification of the 
objectness failed, we can select the next hypothetic cluster 
with less features, determine and execute manipulative 
movements, and repeat doing so until manipulation results in 

 
Fig. 3: Original image (640x480) on the far left with all extracted features on the far right.  First hypothesis (middle left) and second hypothesis 
(middle right), after the manipulation of the first failed. 

Input: all detected 3-D points 

while there exists more than FP points and 
maximum number of steps not reached 

repeat NP  times 
select 3 points at random 
estimate plane parameters 
find inliers - features that fit the estimated plane 
parameters with a predefined tolerance tP 

select parameters associated with the plane with 
the biggest number of inliers F 
if (F > FP) 

save parameters and remove these inliers from 
the set 
cluster features within the detected plane 

Output: the hypothetic planes and point ensembles 
belonging to each plane 

Fig. 2: Generation of object hypotheses. In our experiments we 
chose the number of samples for RANSAC to be NP =1000, error 
tolerance tP = 0.005m, threshold FP = 20 and the maximum 
number of steps 6. 

373



success or no other hypothesis is available.  
Fig. 3 shows an example scene, the hypothesis with the 

highest number of feature points and the additional 
hypothesis. 

III. OBJECT HYPOTHESIS MANIPULATION 
As explained in the introduction, there exists no fully 

general definition about what features characterize an object. 
The term object normally refers to the result of a grouping 
process, which tends to be hierarchical regardless of the 
underlying features that serve as the basis for the visual 
representation.  To find an object, we need to characterize 
the degree of regularity between visual features at each 
abstraction layer of the hierarchical grouping process. Trees 
have been proposed as a suitable representation for 
expressing such perceptual interpretations [6]. If the 
interpretation process is purely visual, then objects are 
defined by visual interpretations that are both coherent and 
complete. A humanoid robot, however, can apply 
manipulative actions on the perceived feature groupings. In 
this way the robot acquires additional information, e.g. based 
on the rigid body motion principle, which can be used to 
generate object representations. Object motion is a powerful 
cue; features associated with the same object normally move 
in a coherent way. Rigid body motion is the most common 
assumption, but it is possible to consider more general cases 
such as articulated or deformable motions. By moving an 
object the robot can acquire a reliable description of the 
visible part of the object without needing to fully interpret 
the scene, which can only be subjective due to the lack of a 
proper definition of objectness. 

There are various possibilities for how to generate robot 
hand movements that induce the hypothesized object points 
to move. One possibility is to attempt to grasp and move the 
object hypothesis as suggested in [14]. While very appealing, 
especially because in this way we can move an object on a 
well-defined trajectory, grasping of unknown objects is a 
difficult and error-prone process. To avoid difficulties with 
grasping, we explored the possibility of applying pushing 
actions to induce objects to move. Pushing actions are easier 
to generate and the probability of success is higher. 
Moreover, objects that cannot be grasped can often still be 
pushed. On the other hand, it is more difficult to move an 
object along the desired trajectory when applying pushing 
movements. Since precise object movement is not important 
for our application – additional information about the object 
can be acquired as long as the object moves sufficiently 
regardless of the actual movement – we selected pushing as 
the most suitable hand motion for the verification of the 
generated object hypotheses.  

Our goal is to apply pushing movements in such a way 
that the chance that the hypothesized plane moves is 
maximized. In order to achieve this, we calculate the 
trajectory according to the plane parameters and the 
underlying surface. The guiding principle when determining 
the robot motion for pushing is that this motion should be 
performed within a surface parallel to the ground surface. In 
this way the robot can avoid pushing into or away from the 
ground surface.  

The system is calibrated so that the x-axis of the robot 
base system is oriented opposite to the gravity direction. The 
actual height of the ground plane can be calculated from the 
detected SIFT features, if needed. The angle θ  between this 
plane and the selected hypothetical plane is the basis for 
determining the end-effector trajectories. We define pushing 
trajectories by specifying a point ro and vector n, which 
respectively determine the initial point and the direction of 
push. We consider two cases in relation to angle θ: 

• θ ≥ 45°: The initial point of pushing ro is specified as 
the average value of all hypothetical plane points. To 
obtain the direction of push, the hypothetical plane 
containing object features is rotated around the axis of 
intersection with the ground plane. The normal of the 
rotated plane is taken as the direction of push. By 
construction it is guaranteed to be parallel to the 
horizontal ground plane. 

• θ < 45°: In this case we project the detected feature 
points onto the plane parallel to the ground plane. The 
height of this plane is determined as in (3). We fit an 
ellipse through these points and calculate the point at 
the end of the shorter principal axis closer to the origin 
of the camera coordinate system. This is the point ro. 
Pushing is performed along the principal axis starting 
at the point ro in the direction of a vector pointing 
towards ellipse center rc. 

 x ' = max xavg − Δ,  min xg + Δ,
xavg + xg

2
 

 
 

 

 
 

 

 
 

 

 
  (3) 

In the above equation xavg is the average height of all inliers 
and xg is the height of the ground plane. In our experiments 
Δ was set to 0.02m. The specification of the end-effector 
trajectory is summarized in Fig. 4. 
  

Input: selected hypothetic plane with parameters (a, b, 
c, d ) and inliers {xH} 

determine horizontal ground plane in the scene 
calculate dihedral angle θ between the hypothetic 
plane and the horizontal plane  
if (θ ≥  45°)  

ro = mean({xH}) (initial point of pushing) 
rotate the selected plane to vertical position 
direction vector n = [a’, b’, c’]T 

else 
vertically project points to the horizontal plane at 
the height x’ (see text) 
fit ellipse to points 
determine ro (see text) 
direction vector n = rc - ro 

manipulation parameters: start at ro + Δrn, push for 
2Δr in direction -n 

Output: starting point and direction of the pushing 
movement 

Fig. 4: Computation of the pushing motion. 
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IV. HYPOTHESIS EVALUATION AND EXTENSION OF THE 
OBJECT MODEL 

Once the computed pushing movement has been applied 
to the selected ensemble of features, we can make use of the 
additional information provided by the induced object 
motion to confirm or reject the hypothesis. As mentioned 
before, we assume the rigid body motion and investigate the 
acquired stereo images before and after manipulation to 
confirm whether the hypothetical object features has moved 
as a rigid body. Moreover, other features in the surrounding 
of the hypothetical object features can be added to the object 
model if they move in the same way as the rest of the 
features. 

Matching is performed between the set of stereo images 
before and after the manipulation. The first set of 3-D 
locations with corresponding descriptors in left and right 
stereo images {x1, dL

1, dR
1} is the basis for forming 

hypotheses about objects and for planning of the pushing 
motion for verification. The second set of stereo images and 
the computed 3-D locations and descriptors {x2, dL

2, dR
2} are 

used to verify whether the features moved as a rigid body. 
The initial sets of matches between both feature sets are 

obtained by comparing descriptors in left and right images. 

The union of locations of matches in both sets is verified 
using RANSAC and least squares fitting of the rigid body 
transformation based on SVD [1]: 

 x2 = Rx1 + t . (4)
Here R and t are the rotation matrix and the translation 
vector, respectively. 

Only motion can provide additional information for object 
verification, therefore it is important to determine if the 
features have moved. The rigid body motion consists of a 
rotational and translational part. If the estimated feature 
translation and rotation imply there was no motion, we have 
to select a new hypothesis among previously determined 
hypotheses (Fig. 6) because in this case no verification is 
possible.  To this end we calculate the norm of parameters R 
and t as estimated by RANSAC. The amount of rotation is 
determined by calculating the unique axis (up to the sign) 
and angle of rotation ϕ associated with the rotation matrix. It 
is possible to show that the above value defines a distance on 
the space of all rotation matrices [28]. To conclude whether 
or not the features moved, we define the minimal values for 
the angle of rotation ϕmin and the norm of translation tmin. Fig. 
5 presents the process of motion matching, estimating the 
parameters of rigid-body transformation and finally 
evaluating the hypothesis. 

Our goal is to determine at least the minimum number of 
object features FR . However, if the number of object 
features is smaller after verification, we cannot simply 
choose another hypothesis if the parameters of the rigid-body 
movement implied that the features have moved and thus the 
scene has changed. In this case a new set of hypotheses 
based on newly acquired stereo images must be acquired. 

 

 

 
Fig. 6: Three of the detected hypotheses. 

Input: ({x1, dL
1, dR

1}, {xHi, dL
Hi, dR

Hi}; i = 1, …, number 
of hypotheses) 

while (hypotheses available) and (object features not 
verified) 

select hypothesis { xHi, dL
Hi, dR

Hi} 
manipulate selected plane (Fig. 4) 
compute {x2, dL

2, dR
2} based on images acquired after 

manipulation 
determine the set of features with matching descriptors  
{xM

1, xM
2}, where {xM

1} ⊆ {xHi} 
repeat N times (RANSAC) 

select 3 matching 3-d locations at random from the 
set  {xM

1, xM
2} 

estimate parameters R and t 
find the number of matches in sets {x1}, {x2} that fit 
the rigid motion model with tolerance te 

evaluate transformation with the highest number of 
matches F: 
if  (| ϕ | < ϕmin and || t || < tmin) 

select next hypothesis 
else if  (F  < Fmin) 

exit and form a new hypothesis 
else 

determine object features ({xOF
1}, {xOF

2} within the 
set of available features {x1}, {x2} that fit the model 
with a tolerance te 

Output: verified object features 

Fig. 5: Hypothesis evaluation. In our experiments the error tolerance te 
was set to 0.005m, the number of samples for RANSAC NR to 100, 
threshold Fmin to 10 and the tolerances ϕmin and tmin to 5° and 0.05m, 
respectively. Tolerance te indicates the maximal allowable absolute 
displacement between features in 3-D space. 

375



A. Accumulation of object knowledge 
To form a more comprehensive object model, the robot 

needs to see the object from different viewpoints. Our 
algorithm for acquiring images from multiple viewpoints is 
essentially a modification of the manipulation algorithm 
presented in Section III. The point ro and the direction of 
pushing n are determined as described in Fig. 4. The 
difference is that the direction of pushing n is rotated around 
the axis in the direction of gravity by a pre-specified angle α. 
(In our experiments the angle α was set to 20°). 
Alternatively we could modify the point of pushing. 

V. EXPERIMENTAL EVALUATION 
We experimentally evaluated the formation of hypotheses 

about the objects, the generation of pushing actions to 
confirm or reject the generated hypothesis and the 
verification of hypotheses based on the resulting changes in 
the scene. 

In all our experiments a predetermined number of 
hypotheses (set to 6) were generated. Pushing movements 
(see Fig. 7) were actually carried out in 96% of experiments; 
for the rest of experiments the determined actions could not 
be conducted due to the limited workspace. 

To test the evaluation of hypotheses, we considered two 
cases. Firstly, the features included in the generated object 
hypothesis belong to one object. In such cases, the robot 
should be able to recognize these features as object features 
and possibly find more object features, which were not 
included in the initial hypothesis. Secondly, the hypothesis 
contains features stemming from more than one object. The 
robot should be able to a) remove features not belonging to 

the object that was moved and b) possibly add more object 
features. In order to test the performance of our approach in 
both cases, i.e. adding and removing features, we encouraged 
the formation of hypotheses involving more than one object. 
Objects with planar surfaces were purposely similar in size 
and placed together during experiments to increase the 
probability of joining their planar surfaces in the initial 
object hypotheses. As a result the hypotheses involving more 
objects represent 42% of all experiments. 

Successful performance in case of "one-object" 
hypotheses is presented in the first row of Fig. 8. If the 
hypothesis involves more than one object (as in the second 
and third row of Fig. 8), it is only possible to distinguish 
between features of different objects if the objects move in 
different ways. In the experiment in the second row the 
features of the object, which moved as a result of pushing, 
were added to the group of object features, while the features 
belonging to another object were discarded. In the third row 
the matched features belong to objects moving in unison. 

 

 

 
Fig. 8: Experiments. First column presents all 3-d features. Hypotheses are depicted in the second column. Third and fourth column present the 
determined object features in images before and after manipulation. Adding features to "one-object" hypothesis is presented in the first row. 
Other rows show determining object features in case of hypotheses involving more than one object. 

 
Fig. 7: The execution of pushing movement.  

376



The built-in logic of our approach is that all features that 
move in accordance with the rigid body motion principle 
belong to the same object. Thus the two objects cannot be 
separated in such cases.  

The statistical evaluation is presented in Tab. 1. We 
labeled the experiment a success if we succeeded to verify 
more than FR object features. More than half of our 
experiments (58%) ended in success. Included as success are 
also the experiments, where the generated pushing action 
induced more than one object to move in unison (6% of all 
experiments). 

36% of experiments ended with less than FR object 
features. Low number of features was due to difficulties in 
feature matching over big viewpoint changes. Due to the 
only partial object information, the manipulation can result 
in uncontrolled movement of the objects and this can cause 
big viewpoint changes. According to the authors of [27], no 
feature detector-descriptor combination performs well with 
viewpoint changes of more than 15-30° and only a small 
fraction of all features can be matched for viewpoint changes 
beyond 30°. In such cases it is often not possible to match 
the features before and after manipulation. Since the 
movement has occurred and thus the scene has changed, it is 
necessary to acquire and process new images to form a new 
set of object hypotheses. 

For 6% of the experiments it was established that the 
group of features did not move. The features did not move 1) 
because the pushing actions were not conducted (limited 
workspace) and 2) because the action did not generate 
changes in the scene. In such cases, the next hypothesis from 
the selection of lower-ranked hypotheses is selected. 

A. Accumulation of feature points 
Accumulation of object features depends on changing the 

direction of view with respect to the object. On the one hand, 
the object rotation must be big enough to change the view 
sufficiently to make previously unseen features visible, but 

on the other hand, it must be small enough to allow feature 
matching across different views. Fig. 9 presents the 
successful accumulation of object knowledge across 
viewpoints after two consecutive pushing actions. 

VI. DISCUSSION AND FUTURE WORK 
In this work we focused on detecting and learning about 

objects that contain some planar surfaces. We discover 
object hypotheses by detecting planes in the images 
processed by the SIFT feature detector. These hypotheses 
serve as the basis for the generation of pushing actions, 
which are used to confirm or reject the existence of the 
object after a successful push. The application of a number 
of consecutive pushing actions allows us to accumulate 
object knowledge across viewpoints. Planar surfaces are not 
the only possible smooth surfaces that can be utilized for this 
purpose. In the literature, other modeling schemes such as 
superquadrics [15], generalized cylinders [26], geons [3], etc. 
have been proposed to reconstruct 3-D surface models. We 
chose to perform this study with planar surfaces because 
planes can be characterized by a small number of points, 
which is important for algorithms such as RANSAC. In 
addition, we are primarily interested in household 
environments, which contain many objects with planar 
surfaces. The detection of other types of smooth surfaces and 
the generation of the associated pushing actions for the 
verification of object hypotheses is an important topic of our 
future research. This will require us to solve larger initial 
reconstruction problems because other surfaces are normally 
represented by more than 3 points.  

We note that other researchers attempted to support object 
segmentation by manipulation. The work of Fitzpatrick [10] 
showed that poking can provide additional cues for 
segmentation. The segmentation process was based on the 
first contact between the robot and the object, detected when 
image motion caused by the robot arm spread across a wider 
distance than the arm could possibly have moved in the time 
available. Unlike our approach, this work did not include 
systematic algorithms for identifying initial object 
hypotheses and determining optimal pokes to confirm or 
reject the current hypothesis. Another distinguishing feature 
of our work is that we provide techniques for accumulating 
3-D object data based on knowledge provided by 
consecutive pushing actions. 
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