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Abstract—Direct imitation of human movement with a hu-
manoid robot, which has a similar kinematic structure, does
not guarantee a successful completion of the task because of
different dynamical properties. Our research starts by showing
how to apply a generalization algorithm to extract the desired
movement primitives from multiple human demonstrations. The
emphasis of the paper is on a method that constrains the
extracted movement primitives when mapping them to a robot,
taking into account a critical criterion of the task. As a practical
example we study the stability of a robot, which is determined
through a normalized zero-moment-point. Our approach is based
on prioritized task control and allows direct movement transfer
as long as the selected criterion is met. It only constrains the
movement when the criterion approaches a critical condition. The
critical condition thus triggers a reflexive, subconscious behavior,
which has higher priority than the desired, conscious movement.
We demonstrate the properties of the algorithm on a real, human-
inspired leg robot developed in our laboratory.

I. INTRODUCTION

Movement imitation is one of the approaches of transferring
human movement to robotic mechanisms [1]. In the paper
we show how we can constrain the recorded movement when
mapping it to a robot, in order to maintain a chosen criterion.
The criterion is in our case the stability of the robot of a
human-inspired leg robot.

Different kinematic and dynamic properties of humans and
robotic mechanisms do not allow direct transfer or mapping of
movement from one to the other [2]. The resulting movement
of the robot will most likely not accomplish the same task. For
example, recorded joint movement of humans when squatting
will, if directly copied to a humanoid robot, result in the
robot tipping over. The movement has to be somehow changed
or constrained to account for the difference in the kinematic
structure and the dynamic properties.

One of the approaches is to transfer the task space move-
ment, for example, the movement of the tip of the arm,
thus completely ignoring the joint space movements of the
demonstrator. In such case the joint movement is under the
control of an inverse kinematics algorithm. Null-space motion
and prioritized task control can be used to, for example, add
desired joint movement as a secondary task. While the primary
task is end-effector movement in task space, the secondary
task, if possible, maintains similar poses as the demonstrator
[3]. Another common use of the secondary task is to im-
plement obstacle avoidance [4]. Such prioritized task space
control is also referred to as Operational space control [5].

In our approach we change the formulation of the primary
and the secondary task, so that the desired movement of the
robot is in fact a secondary task. The primary task is only
observed if we approach a pre-defined threshold. While far
from the threshold, the algorithm allows direct control of
separate joints. Upon approaching the threshold, the primary
task smoothly takes over and only allows joint control in its
null-space. The algorithm allows smooth transition in both
ways – between observing the primary task with the secondary
in its null space, or just the unconstrained secondary task.
This allows unconstrained joint movement while not close
to the threshold. As such, it mimics the human reflexive
mechanism of retaining the stability of the posture. Similarly
to the proposed algorithm, the proprioceptive and vestibular
systems of the human body trigger the reflexes that ensure
postural stability during an arbitrary motion [6], [7].

We demonstrate the approach on a stability task, where we
perform squatting movements on a planar leg robot, which has
similar kinematical properties as a human in the sagittal plane
[8]. We use a normalized zero-moment point (ZMP) location
as the criterion of the stability. Control of the stability criterion
only takes over when it approaches the threshold, and even
then the transition is smooth. Otherwise, we use direct joint
control of the mechanism. The demonstrated trajectories, apart
from the offsets, are not modified in advance.

A similar manner of robot control with two different
tasks, where their desired joint velocities blend together, was
presented by Sugiura et al. [9]. Contrary to the proposed
method the authors used a blending coefficient that mixes
two ”primary” tasks, each with its own null-space task. Our
proposed method, on the other hand, allows continuous tran-
sition between a primary and a secondary task. The work by
Mansard et al. [10] provides a general solution for integration
of unilateral constraints. The authors use an activation matrix
which modifies the Jacobian of the task.

To acquire the demonstrated trajectories of movement for
the desired task we recorded several executions of chosen
movements, for example squatting. As human movement can
never be completely reproduced in timing and in movement
itself, representative movement or movement primitives have
to be somehow extracted. We use a generalization algorithm
[11] based on a regression technique to acquire joint movement
primitives for the demonstrated tasks. We modified the algo-
rithm to evenly weight separate trajectories and thus extract
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primitives of movement, encoded in the dynamic movement
primitive (DMP) framework [12], [13].

The rest of the paper is organized as follows. In section two
we first show how we extract and encode motion primitives
from the demonstrations trough generalization. In section
three we present our approach on how to constrain the joint
movement of the robot with reflexive behavior and show how
to calculate of the ZMP criterion. In section four we present
our leg robot and give results of real-world experiments.
Conclusions and discussion are given in section five.

II. MOTION PRIMITIVES

A. Data acquisition
Using motion capture we measured the movement of several

subjects performing different tasks. We used 3D investigator
motion capture equipment from NDI. Our measuring set-up
consisted of three position sensors, where each of these sensors
consists of three infrared cameras. We used active markers.
Fig. 1 shows the leg robot, developed at our laboratory, and a
silhouette of a person, side by side in the sagittal plane. We can
see that the kinematical structure of the planar mechanism and
a human are similar in this plane. A dynamical model from
SimMechanics is presented in the right. The placement of the

Fig. 1. Similarity in kinematical structures of the leg robot and a person. The
dots on the silhouette show the location of the markers for motion capture. A
dynamical model from SimMechanics with marked centers of mass (COM)
for the body, thigh and shank, is shown on the right. Most stable point (MSP)
and the least stable points (LSP) are marked as well.

markers for motion capture is conditioned by the kinematical
structure of the robot. In our case we could acquire joint
movements of the hip, the knee and the ankle using 5 markers,
as shown in Fig. 1. These were attached to the demonstrator
at these joints, plus a marker on the foot and one on the body.
Using these 5 markers we can calculate the joint angles by

Φ = arccos
aTb

‖a‖‖b‖
, (1)

where Φ is the joint angle and a,b are vectors defined by
adjacent markers.

B. Movement Primitives

We extract movement primitives for separate joints from a
set of recordings, and encode them in the dynamic movement
primitive (DMP) framework [12], [13]. A set of equations

τ ż = αz(βz(g − y)− z) + f(x), (2)
τ ẏ = z, τ ẋ = −αxx, (3)

where

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x, (4)

Ψi(x) = exp
(
−hi (x− ci)2

)
, (5)

defines what is known as a discrete DMP. In (2) – (5),
αz = 4βz > 0, g is the goal of the movement, x is the
phase of the movement, N is the number of kernel functions,
Ψ are the kernel functions, wi are the weights of the kernel
functions, hi is their width and ci is equally distributed on
x. The details on the derivation and the use of DMPs are in
[12], [13], [14]. Once we have collected movement data, we
have sets of movements for each task. One set of movements
consists of several recordings of the same movement.

The recordings are of different length, because humans can-
not reproduce exactly the same movement for every execution
of the task. Movement of different subjects also varies and
besides that also depends on the marker placement. To extract
the primitives of separate movements we use a generalization
algorithm [11]. The algorithm can be used to generalize from
different demonstrated trajectories, for example from trajecto-
ries of reaching to different points or throwing to different
targets [11]. For the algorithm to work, the demonstrated
trajectories have to have similar characteristics, for example,
all reaching trajectories have to be straight (or all have to be
curved, etc.). The result of the generalization algorithm is for
such a case a straight trajectory to a given target location -
query point.

For the case of generalizing amongst trajectories that all
describe the same movement, we had to change the algorithm
to put the same weight on all demonstration trajectories. Addi-
tionally, the target for the generalization must be representative
of the movement. We chose the average final position of the
joints. This final position is set as the goal g of the DMP, which
encodes the generalized motion primitive. The timing of the
movement primitive is also a result of the generalization.

The generalization algorithm adjusts the weights of the
DMP, i.e. wi from (3), to best fit the measured data.
We need triplets of position, velocity and acceleration
{yd(tj), ẏd(tj), ÿd(tj)} , j = 1, ..., T , where tj are the sam-
pling times. In our case the data was obtained by motion
capture and is in joint space. Equations (2) and (3) can be
rewritten in a single equation by replacing z with τ ẏ to get

τ2ÿ + αzτ ẏ − αzβz(g − y) = f, (6)

where f is defined as in (4) and (5). We thus get

F (tj) = τ2ÿd(tj) + αzτ ẏd(tj)− αzβz(g − yd(tj)), (7)
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f =

 F (t1)
...

F (tT )

 ,w =

 w1

...
wN

 , (8)

and obtain the following set of linear equations

Xw = f , (9)

which needs to be solved to estimate the DMP describing the
desired motion. For discrete movements, as is our case, the
matrix X is

X=



Ψ1(x1)
N∑

i=1

Ψ1(x1)

x1 ... ΨN (x1)
N∑

i=1

ΨN (x1)

x1

... ... ...
Ψ1(xT )

N∑
i=1

Ψ1(xT )

xT ... ΨN (xT )
N∑

i=1

ΨN (xT )

xT

 . (10)

The parameters w can be calculated with the above system
of differential equations in a least-squares sense. Such batch
approach is common for discrete movements.

All sampled trajectory points included in the library of
demonstrated movements can be used. The optimal parameters
w can be calculated from the available training data by solving
the following regression problem:

C(w) =
M∑
k=1

||Xkw − fk||2 (11)

with respect to w.
Figure 2 shows motion capture and generalization results

for squatting. Thin lines show the collected data. The gen-
eralized trajectories are presented with dashed lines. Marker
placement has proved quite an issue, because the recorded
trajectories have too much of an offset at initial conditions. We
only present the results of measurements with similar initial
conditions in all the trials. The generalization algorithm suc-
cessfully deals with different lengths of separate demonstration
movements. It is important to note that the generalization can
only be successful for similar movements, so all squatting
movements have to be performed in the same manner. In our
case the heel had to be on the ground all the time.

III. CONSTRAINING MOVEMENT WITH REFLEXIVE
BEHAVIOR

In this section we show how we can constrain the recorded
movement when mapping it to the robotic mechanism, in order
to maintain a given criteria. In our case the criteria is the
location of a simplified Zero-Moment-Point (ZMP).

A. Calculating the zero moment point

When humans do squats with the feet together, or when do-
ing vertical jumps, large forces act on a narrow (short) support
plane, thus reducing the area of stability. Stability is one of the
major problems in performing movements of humanoid robots.
In the case of our leg robot we are dealing with stability in
the sagittal plane (forward-backward). Stability in the lateral
plane (left-right) is in our case ensured by a wide foot and the
robot is planar and cannot move in the lateral plane.
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Fig. 2. Motion capture results for squatting. Recorded data is presented with
solid lines and the generalized primitives are presented with dashed lines.

Zero-Moment Point (ZMP) was defined in robotics as a
stability criterion by Vukobratovic and Borovac [15]. In short,
it is defined as the point on the ground about which the sum
of all the moments of the active forces equals zero [16].

The model of our leg robot, as shown in Fig. 1, can be
represented as a triple inverted pendulum, with most of the
mass in the upper segment - the body. Such structure is
inherently unstable. The robot is stable when the forces on
the foot are in the center of the support polygon - the foot.
We denote this position as the MSP (Most Stable Point) as
shown in Fig. 1. Contrary to that, the Least Stable Point (LSP)
represents the point when the ZMP is on the very edge of the
support polygon - either on the heels or on the tip of the toes,
also depicted in Fig. 1. The more the ZMP approaches a LSP,
the less stable is the robot. If the ZMP reaches any of the
LSPs, the robot tips over.

To calculate the position of the ZMP of the leg robot,
we need the dynamical model. We denote the i-th link with
the mass mi at the mass center point ri = [xi, yi, zi]

T

(relative to the inertial frame), inertial tensor Ii and with the
angular velocity ωi. External forces and torques are denoted
by Fi,k and Mi,j , where index k tracks all forces and index
j tracks all torques acting on i-th link. The overall rotational
and translational equation of the system in an arbitrary point
p = [xp yp 0]

T on the plain z = 0 is

∑
i

{mi (ri − p)× (r̈i + g) + Iiω̇i + ωi × Iiωi}+C = Mp

(12)
where

C = −
∑
j

Mj −
∑
k

(sk − p)× Fk. (13)

Here sk is the vector that points towards the position where
the external force Fk acts on the robot, g is the gravity
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acceleration vector (horizontal supporting surface) and Mp

is the resulting torque at the observed point p.
In accordance to the ZMP definition [15], only the moment

Mp = [0 0 Mz]
T acts at the point pzmp = [xzmp yzmp 0]

T ,
and by ignoring the inertial tensor Ii [17], and with no external
forces acting on the robot, the components are

xzmp =

∑
i

mi {xi (z̈i + gz)− zi (ẍi + gx)}∑
i

mi (z̈i + gz)
, (14)

and

yzmp =

∑
i

mi {yi (z̈i + gz)− zi (ÿi + gy)}∑
i

mi (z̈i + gz)
. (15)

The relationship between the ZMP and the joint space
velocity q is given by

uz = Jzq̇, (16)

where

Jz =

[
∂yzmp

∂qi

]
(17)

and uz is the velocity of the ZMP in general, depending on
the task. In the case of the leg robot this becomes uz = ẏzmp.
The Jacobian Jz is a function of the actual joint angles (i.e.
the joint angles set at the robot’s joints at each given moment),
and it essentially maps the velocity vector q̇ in the joint space
to the velocity of the ZMP.

In the next section we show how the Jacobian inverse is
employed to constrain the joint space movement as reflexive
movement in order to maintain the stability of the leg robot.

B. Constraining the movement with reflexive behavior

The task of the leg robot is to do squats, where the robot
joint movement is given by the extracted joint movement
primitives for squatting, i.e. to perform the recorded joint
movements. Performing the recorded squatting movement only
makes sense if the robot maintains stability. Maintaining sta-
bility is in this case the primary task. The issue is how to map
the demonstrated movements (the extracted joint primitives)
to the robot in joint space, and only change them when the
robot would lose stability.

The difference to a classical approach is in the control of
the ZMP. The movement of the ZMP is not defined and can
freely move along the supporting polygon, as long as it stays
within a defined boundary. While within the boundary, the
desired joint movement (from the demonstration) is completely
observed. As the ZMP approaches the defined boundary, which
is close to the LSP, the primary task takes over and only allows
joint movement, which would not produce instability. As this
movement takes command only when necessary, it acts sort
of reflexive, higher-priority behavior.

To control the stability we define the stability index as a
function of a normalized ZMP to the power of an odd number
by

zn =

(
yzmp − yMSP

|yLSP − yMSP |

)2n−1

. (18)

The stability control is defined with

ẏ = uz = Kpez = Kp (zd − zn) = Kp(−zn), (19)

because the desired (referential) normalized ZMP location
zd = 0. Kp is the proportional gain. The commanded joint
space velocity of the leg robot is defined with

q̇ = J†zuz +KpN
′
zq̇n (20)

where q̇n = qn − q is the velocity that tracks the desired
trajectory, J†z is the generalized inverse of (17) and matrix
N′z is given by

N′z = diag(Nz) + |zn|(Nz − diag(Nz)). (21)

Here Nz is the null space matrix associated with Jz , given by
Nz = I− J†zJz .

When |zn| approaches 1, the zero moment point approaches
the boundary of the stability region and matrix N′z takes the
form N′z ≈ Nz . Hence in this case the secondary task only
generates movements in the null space of the stability task.
We can still move any arbitrary degree of freedom, but only
if that motion does not affect stability control, i. e. the motion
of zn toward the desired value zd = 0. This is the classic
null space control. Power n in Eq. (18) controls how close
to the boundary of the support polygon we allow the ZMP to
move before triggering stability control. If n is large, then zn
is close to zero over a large portion of interval −1 ≤ zn ≤ 1,
whereas a smaller n triggers stability control earlier.

On the other hand, while |zn| remains close to zero, we
can allow trajectory tracking even if the resulting movement
interferes with stability, since in this case the zero moment
point is safely within the boundaries of the support poly-
gon. Nevertheless, we multiply the desired velocity q̇n by
N′z ≈ diag(Nz), which has the effect that the robot follows
the desired trajectory more accurately with the degrees of
freedom that affect stability less. To prove that this is indeed
the case, we first show that coefficients of diag(Nz) are always
nonnegative. This is due to the properties of Moore-Penrose
pseudoinverse [18], which make JzJ

†
z an idempotent matrix,

i. e. (JzJ
†
z)2 = JzJ

†
z . It follows that

N2
z = (I− JzJ

†
z)2 = I− JzJ

†
z − JzJ

†
z +

(
JzJ

†
z

)2
=

= I− JzJ
†
z = Nz, (22)

thus Nz is idempotent, too. Since Nz is also symmetric, the
diagonal elements of Nz , denoted here by aii, are given by

aii = a2
ii +

n∑
j=1,j 6=i

a2
ji ≥ 0. (23)

As explained above, JzJ
†
z is also an idempotent, symmetric

matrix, thus its diagonal elements bii ≥ 0,∀i, too. Conse-
quently, aii = 1− bii ≤ 1 and in summary, 0 ≤ aii ≤ 1.
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If aii = 0, then it follows from Eq. (23) that aji = 0,∀j. In
this case we have Nzei = 0, where ei is the i-th coordinate
vector, i. e. ei = [0, . . . , 0, 1, 0, . . . , 0]T . This means that ei
is orthogonal to the null space of Jz , thus any motion in the
i-th degree of freedom directs the robot straight out of the
stability polygon. For this reason we suppress the movement
in the i-th degree of freedom if the i-th diagonal element of Nz

becomes small. Note that the suppression is only temporary;
if the difference between the desired movement and the actual
execution becomes large, then the desired change q̇n = qn −
q in (20) becomes large and the commanded motion starts
tracking the desired motion regardless as long as the ZMP
remains within the stability polygon.

On the other hand, if aii = 1, then it follows from Eq. (23)
that aji = 0, i 6= j. In this case we have Nzei = ei, which
means that ei belongs to the null space of Jz . Consequently,
motion in the i-th degree of freedom does not affect the
stability of the robot at all. It therefore makes sense to allow
the robot to freely follow the trajectory for such degrees
of freedom. In summary, the multiplication by diag(Nz) is
equivalent to weighting the degrees of freedom with a factor
that is inversely proportional to the amount to which the
motion in each degree of freedom interferes with the primary
task. Since the elements of diag(Nz) are non-negative, the
resulting controller always causes the robot to move in the
right direction, but slows down the motion if it significantly
affects stability control.

IV. EXPERIMENTAL EVALUATION

A. Leg robot

We developed a leg robot, which was inspired by the
anatomic properties or the human body. The robot is presented
in Fig. 1. It is a planar robot composed of four segments
which represent the foot, shank, thigh and trunk of a human.
The segments are connected together by rotational hinge joints
whose axes are perpendicular to the sagittal plane. Each joint
is activated by a servo drive mounted inside the proximal
segment with regard to the joint. We use Maxon RE 40 DC
servo drives. The gear ratio we chose is 1 : 8, which allows
high torques, but squatting overloads the motors, so only a
few squats can be performed at a time. The largest part of the
robot weight is in the trunk segment where are the motor that
activates the hip joint, the computer, motion controller and all
power amplifiers. Altogether, the robot weights ∼4.6 kg. The
robot is connected to an external power supply.

B. Squatting movement

We performed squatting movement with our leg robot. The
desired joint movement is given with movement primitives,
extracted from human demonstrations. One-to-one mapping
of the movement to the robot, accounting for the offsets to
compensate the initial position of the robot, results in the
robot tipping over. This is clearly shown in Fig. 4, where we
can see that unconstrained movement (red), moves the ZMP
out of the area of stability. Reflexive movement (blue), on
the other hand, successfully maintains stability. Fig. 3 shows
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Fig. 3. Joint movement during successful (solid) and unsuccessful (dashed)
squatting. The difference in movement is small, but critical. In comparison to
the extracted primitives in Fig. 2, we had to add offsets to account for initial
position of the leg robot.
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Fig. 4. ZMP location, calculated from the model, during successful (blue)
and unsuccessful (red) squatting. The dashed lines give the LSPs.

constrained (solid) and unconstrained (dashed) joint movement
of the robot. We can see that the trajectories are very similar.
Fig. 5 shows a sequence for successful squatting with reflexive
behavior in the top row, and unsuccessful squatting from
simple one-to-one mapping in the bottom row.

Fig. 6 shows the comparison of the ZMP movement, cal-
culated from the model, and the projection of the center of
gravity on the floor, measured with a Kistler force place, for
three consecutive squats. We can see that the model provides
an accurate stability criterion.

V. CONCLUSION

In the paper we have shown how we can use a modified
prioritized task control to implement reflexive movement of
a robot. Higher priority movement only takes over when the
desired movement approaches a given threshold, and thus acts
as reflexive movement. We have shown how to apply the
algorithm to a leg robot performing squatting. The algorithm
can constrain the demonstrated movement to maintain stability.
In the future we would like to implement the algorithm in
the lowest level of control of our mechanism, and try similar
reflexive behavior in other scenarios. We have also shown how
we can effectively apply a generalization algorithm to extract
movement primitives from sets of recorded movements.
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Fig. 5. A sequence of still photos showing squatting movement. The top row show successful execution of the movement using reflexive movement. The
bottom row show execution of unconstrained demonstrated movement.
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