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Abstract—A truly autonomous robot should be able to gen-
eralize known actions to new situations and to autonomously
refine its knowledge base. In this paper we present a three
stage approach to the problem of expanding and refining the
database of sensorimotor knowledge. The first stage is based on
the generalization of previously trained movements associated
with a specific task, which results in a first approximation of a
suitable control policy in a new situation. The second stage applies
learning on the manifold defined by the previously acquired
training data, which results in a learning problem of reduced
dimensionality. The final tuning of the desired control policy
is accomplished by learning in the full state space, where the
dimensionality of the problem is much higher. The assumption
is that the first two steps already provide a good initial estimate
for the optimal control policy so that this final step only locally
refines the parameters learned in the first two steps. This
significantly reduces the number of test trials needed by standard
reinforcement learning techniques. The proposed approach was
evaluated in simulation as well as on the real robot in a ball
throwing experiment.

I. INTRODUCTION

Autonomous learning of new actions is a difficult problem
because the search space that has to be explored is potentially
huge [1]. The dimensionality of the search space is not affected
only by the degrees of freedom of the robot, which can be
very high with modern humanoids, but also by the underly-
ing representations and the robot’s environment. Therefore,
concern how to reduce the dimensionality of the problem
while retaining the necessary flexibility to find an optimal
solution to the problem is one of the biggest challenges of
contemporary robotics. Among the most promising paradigms
that are used for this purpose are imitation learning, where
the robot obtains a rough approximation for the movements
needed to accomplish the desired action by demonstration
[1], [2], and reinforcement learning [3], [4], where the robot
iteratively refines its movements until the desired task has been
accomplished.

The goal of this paper is to speed-up the learning process by
combining the ideas from imitation and reinforcement learning
with statistical generalization [5]. Statistical generalization en-
ables the inference of movements suitable for a given situation
from past successful movements in similar situations. Hence,
once the robot has learned how to solve a task in a number of
different but related situations, it can generalize the available
motor knowledge to all situations covered by the database
of training examples. It should be noted that since statistical
generalization is not based on a proper physical model, the
generalized movement can only be an approximation for

the movement, which is optimal in for a given situation.
The generalization process results in a parameterization of
the trajectory space with query parameters that are used for
generalization. The number of these parameters and thus the
dimensionality of the associated trajectory manifold is much
lower than the number of parameters that are usually needed
to accurately encode general trajectories. For example, in the
case of ball throwing, the task is characterized by a target at
which the robot should throw the ball. If the target lies in a
plane, this parameterization is two dimensional. On the other
hand, the number of parameters needed to encode a single
throwing trajectory, for example by splines, is usually much
larger. This leads us to propose to expand the initial motor
knowledge in the following manner:

1) Acquire a number of initial example movements, which
successfully solve the task in situations, if possible
distributed across the complete task space. This can be
accomplished for example by direct imitation.

2) Generalize the available training data to new situations
as they arise (see Section II).

3) Refine the generalized movement by reinforcement
learning on the manifold defined by the trajectories in
the example database (see Section III).

4) In most cases we will not reach the optimal performance
in the manifold spanned by the training trajectories.
The fine tuning of the control policy should finally be
accomplished by policy learning in a high dimensional
trajectory space, which is required to encode the desired
movement (see Section IV).

5) The newly learned movement is added to the database
of example movements (together with the parameters
describing the task) and the process is repeated at 2).

In the following sections we present the details of our
approach.

II. ACTION GENERALIZATION FROM PREVIOUS
EXPERIENCES

We use dynamic movement primitives (DMPs) proposed by
[6] as our basic movement representation. With this representa-
tion, every degree of freedom is described by its own dynamic
system, but with a common phase to synchronize them. In the
case of point-to-point (discrete) movements, the trajectory of
each robot degree of freedom y (given either in joint or in
task space) is described by the following system of nonlinear
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differential equations

τ ż = αz(βz(g − y)− z) + f(x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx, (3)

where x is the phase variable and z is an auxiliary variable. αx,
αz , βz and τ need to be specified in such a way that the system
converges to the unique equilibrium point (z, y, x) = (0, g, 0).
The nonlinear term f contains free parameters that enable the
robot to follow any smooth point-to-point trajectory from the
initial position y0 to the final configuration g

f(x) =

∑N
k=1 wkΨk(x)∑N
k=1 Ψk(x)

x, Ψk(x) = exp
(
−hk (x− ck)

2
)
.

(4)
Here ck are the centers of radial basis functions distributed
along the trajectory and hk > 0 their widths. Weights wk
are estimated in such a way that the DMP encodes the desired
trajectory. In the equations above, αx, αz , and βz are constant.
They are set so that the convergence of the underlying dynamic
system is ensured [7].

Lets assume that we have a set of example trajectories
together with the parameters characterizing the task

Z = {ykd(tk,j), ẏ
k
d(tk,j), ÿ

k
d(tk,j);qk| k = 1, . . . ,M,

j = 1, . . . , Tk},
(5)

where ykd(tj), ẏkd(tj), ÿkd(tj) are the measured positions,
velocities, and accelerations on trajectory k, M is the number
of examples, and Tk the number of sampling points on each
trajectory. Indexing of the degrees of freedom is omitted from
Eq. (5) for clarity. qk ∈ Rn are the parameters describing
the task in a given example situation, e. g. the location of
a target at which the robot should throw a ball in the case
of ball throwing. We use these parameters as query points
into a database of example trajectories. The trajectories can
be specified either in joint or task space. The issue is how to
generate a DMP specifying a movement for every new query
point q, which in general will not be one of the example
queries qk.

To generalize the example movements to new situations, we
need to learn a function

G (Z,q) 7−→ [wT , τ, g]T = θ. (6)

In general, the functional relationship between q and
[wT , τ, g]T given in a set of examples Z is unknown. Note
that G (Z,q) becomes a function only by constraining the
generalized trajectories to be as similar as possible to the ex-
ample trajectories. For example, there are many different ways
of how to throw a ball into a basket at a certain location. The
relationship between the basket positions (query points) and
DMP parameters becomes a function only by requiring that the
generalized throwing movements are similar to the example
throws. In most cases it is difficult to find a global model that
provides good approximation for the function G (Z,q). We
therefore avoid global model identification and rather apply
regression techniques to generalize the movements.

Due to significantly different sizes of data sets involved in
the calculation of parameters w on the one hand, and g and
τ on the other hand, we utilized different methods to estimate
them. In particular, we applied locally weighted regression for
the estimation of the shape parameters and Gaussian process
regression [8] to estimate g and τ . We relate the reader to
[5] for details about this work. The important point for this
paper is that a functional relationship between the query points
and DMP parameters exists and that it can be learned from
example movements.

III. POLICY LEARNING IN CONSTRAINED DOMAIN

The general goal of policy gradient learning is to optimize
the policy parameters θ ∈ Rk, maximizing the expected return
of the state value cost function

J(θ) = E

[
H∑
k=0

akrk(θ)

]
, (7)

where k is the time step, ak are time-step dependent weighting
factors, H is the horizon which can be infinite and rk is the
reward received at each time step. It has become a widely
accepted alternative to the value function-based reinforcement
learning [9]. Here we assume that our task can be described as
episodic task. The general parameter update rule of the policy
gradient methods, which follows the steepest descent on the
expected return, is

θm+1 = θm + αm∇θJ(θ), (8)

where αm denotes a learning rate. If the gradient estimate
is unbiased and the learning rate fulfills

∑∞
m=0 αm > 0

and
∑∞
m=0 α

2
m = const, the learning process is guaranteed

to converge at least to a local minimum [4]. One of the
most important advantages of the policy gradient methods
over the traditional reinforcement learning techniques is that
we can easily limit and control the update steps. Namely, a
drastic change of parameters can be hazardous for the robot
and its environment. Additionally, drastic changes make the
initialization of the policy based on domain knowledge or
imitation learning useless, as the initial parameters can vanish
after a single update step [1].

The main problem of policy gradient methods is how to
obtain a good estimator for the policy gradient ∇θJ(θ). If
the deterministic model of the system-environment would be
available, we could compute this gradient by

∇J =
∂
∑H
k=0 akrk
∂θ

(9)

Unfortunately, such a model is normally not available, there-
fore a number of policy gradient estimation methods were
proposed, such as finite gradient methods [4], likelihood
ratio methods [10], natural policy gradients [11], etc. Policy
gradient estimation becomes problematic as the dimensionality
of policy parameters increases, since a large number of roll-
outs has to be performed in order to accurately estimate
the gradient. However, if a sufficient amount of previous
experiences is available to perform statistical generalization
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(like described in Section II), we can estimate a mapping from
some lower dimensional parameters q to the corresponding
policy parameters θ. Thus our learning process defined in Eq.
(8) turns into

qm+1 = qm + αm∇qJ(q), (10)

∇qJ ≈
∆
∑k=H
k=0 akrk
∆q

, (11)

where the dimensionality of q is much lower than the dimen-
sionality of θ.

In our ball throwing experiment, function G (Z,q) is
estimated using example queries qk obtained from previous
throwing trajectories in the neighborhood of our query point
q, which is actually the desired target position. The search
domain of the learning algorithm is constrained within query
points qk.

Since the dimensionality of query point q is usually low
and the search domain is constrained within the example
queries qk, we found finite gradient method for policy gradient
estimation appropriate. In finite gradient method, the policy
parametrization is varied I times by small increments ∆qi, i =
1, . . . , I . For each policy parameter variation qm + ∆qi,
we perform roll-outs, collect rewards and calculate central
difference estimator of cost function perturbation ∆Ji =
J(qm − ∆qi) − J(qm + ∆qi) The policy gradient estimate
can be computed by

∇J = ∆Q+∆J, (12)

where ∆Q = [∆q1, ....,∆qi]
T , ∆J = [∆J1, ...,∆Ji] and +

denotes Moore-Penrose pseudo-inverse.
In general it is hard to predict whether the low dimensional

training manifold contains the optimal control policy. Hence,
once the algorithm stops converging to the desired query q,
we switch to the policy learning in the full domain of θ.

IV. UNCONSTRAINED POLICY PARAMETERS LEARNING

To explore the space outside of the manifold defined by the
training trajectories, we have to perform learning in full uncon-
strained space of the control policy parameters θ. In general,
this is a hard problem due to a potentially high dimensionality
of parameters to be learned. For example, a typical control
policy encoded by DMPs might require 30 to 50 parameters for
each joint, which makes the search space huge. Recently, new
efficient methods which combine the well-developed methods
from statistical learning and empirical inference with classical
RL approaches were proposed [12], [13]. Such algorithms
can scale to significantly more complex learning systems and
minimize the number of tuning parameters.

For our experiments, we selected one of state-of-the-
art Reinforcement Learning algorithm PoWER [13]. It is
a probabilistic policy improvement method, derived from
an Expectation-Maximization framework using probability
matching [14]. Unlike the policy gradient methods, it does not
require the tuning of learning rate αm because it returns the

optimal parameter update. The parameter update in PoWER
follows the rule

θm+1 = θm +
〈(θi − θk)r(τi)〉w(τi)

〈r(τi)〉w(τi)
(13)

where i denotes the i-th roll-out, r(τi) is the reward accumu-
lated from the trajectory τ in i-th roll-out and 〈〉w(τi) denotes
the importance sampling. Parameters θi used in roll-outs are
selected according stochastic exploration policy θi = θm +
εi, εi ∼ N (0, σ2). The update rule is the sum of parameter
exploration in each roll-out weighted by its return. The role
of the importance sampling is to minimize the number of roll-
outs, which are needed to estimate new policy parameters.
Additionally, it automatically rejects unsuccessful roll-outs,
which can be caused for example by false sensor readings.
It allows the RL algorithm to re-use previous most successful
roll-outs τi during the estimation of the new policy parameters
θm+1. Importance sampler sorts all past parameters update by
descending order of their return and rejects less successful
ones and re-weights past explorations according to the θm
[15].

V. SIMULATION AND EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed ap-
proach, we evaluated our approach in simulation and on a real
robot. Two case studies were carried out: the first is throwing
the ball at the target position and the second is a ball-in-a-cup
game, also known as kendama. For these experiments we used
the 7 degrees of freedom Mitsubishi Pa-10 robot equipped with
Barrett hand and a vision system for ball tracking running
at 120 Hz. In simulation, we used our own Matlab-Simulink
simulation system [16]. Human demonstrated trajectories were
captured by the Optotrak motion capture system.

In the ball throwing experiment, we constrained ball throw-
ing to targets located in X-Z plane, as shown in Fig. 1.
In simulation we first manually generated four throwing tra-
jectories such that the ball hits the targets located at q1 =
[2.0, 0],q2 = [1.5, 0.5],q3 = [3.5, 0], and q4 = [3.3, 0.5], all
in X-Z plane. These locations together with the associated
throwing trajectories form the training data. Next we searched
for the throwing movements at arbitrary located query points
using the proposed procedure that constrains RL to a manifold
defined by the training trajectories (see Section III). First
approximation of the goal trajectory was calculated using Eq.
(6). Then we performed a policy gradient search in order to
find a query point that generates a throwing trajectory that
results in a throw within the desired precision of 0.01 m.
The reward function was defined as r = e−‖q−q̂a‖, where q
denotes the desired target in X-Z plane and q̂a the calculated
landing position.

Fig. 2 shows the error convergence of the proposed learning
algorithm and its variance. We can see that the learning
algorithm reaches the desired precision of 0.01 m within 20
parameter updates on the average. As it is often the case, it
is possible to achieve additional speed-ups by studying the
physics of the problem. Fig. 3 shows the length of the throws
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as a function of query points q in X-Z plane. The length
distribution is close to linear within the training domain, which
enables additional simplifications of the learning algorithm.
Intuitively, we can skip the subsequent roll-outs for gradient
estimation and update the parameters using the query point
update law

qm+1 = qm + αmem, (14)

where em = q − qa, and qa is the actual query in the m-
th roll-out Fig. 2 shows that learning becomes much faster
and reaches the desired precision within 4 trials. Note also
that each parameter update with central gradient estimation
requires 4 additional roll-outs for the gradient estimation.

In the next experiment we performed the policy learning for
ball throwing where we specified also the inclination angle
of the ball trajectory at the target. Here we had to perform
policy search in the domain of θ using PoWER because the
solution was not contained in the training manifold. In the
ball throwing experiment, three joints were used to encode a
throwing trajectory and each joint trajectory was encoded by
12 parameters (kernel function weights w, goal position g and
trajectory duration τ ), altogether 36 parameters. Comparing to
only 2 parameters needed for learning on the training mani-
fold, it is not surprising that here learning was significantly
slower (see Fig. 4).

Next we considered the learning of ball-in-cup game, which
is known as kendama in Japanese. It is a commonly used
test case for reinforcement learning algorithms, which was
studied in many previous experiments [17], [18], [19], [20].
Here the dynamics of the task is more complicated, which
makes ball-in-cup a hard problem for machine learning. In
order to show the effectiveness of our learning approach, we
provided two human-demonstrated trajectories for the ball-in-
cup, one "too-short" and one "too-long", as illustrated in
Fig. 5a and 5b, respectively. Performing the search in only
one dimension among the two demonstration trajectories, the
algorithm quickly finds the appropriate trajectory, where the
ball is caught by the cup, as illustrated in Fig. 5c. Each
trajectory in X-Z plane is parameterized using 32 values,
which would otherwise require to tune 64 parameters in a full-
dimensional policy search. This explains why the proposed
algorithm is so efficient in comparison with the previous
results [17], [18], [19], [20]. Note also that there are infinitely
many possible ways for how to swing the ball and catch it with
the cup. Combining any two arbitrary example trajectories
does not result in an appropriate policy. Rather, the two
example trajectories should use the same execution strategy,
as shown in Fig. 6. With properly selected demonstration
trajectories, the robot learns the appropriate policy in only
2-3 roll-outs.

We also tested ball-throwing learning and ball-in-a-cup
game learning in real environment. Due to the low accuracy
of ball position estimation by vision and due to the limited
repeatability of the robot, we could only reach the precision
of 0.05 m in ball-throwing. For this precision, learning on
the manifold of training movements was sufficient. The ball

Fig. 1. Learning of ball throwing in simulated environment. q1..4 denote
four demonstration query points in X-Z plane

Fig. 2. Learning error convergence on the training manifold using a)
finite gradient method and b) constant gradient. Vertical bars denote standard
deviation of 100 different query points.

Fig. 3. Throw length as a function of query points q, which are used to
generate throwing trajectories
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Fig. 5. Three sequences of the ball-in-a-cup game. Sequences a) and b) show two demonstration trajectories respectively, learned action is shown in sequence
c). Final ball position for the corresponding robot trajectory is marked with yellow color.

Fig. 4. Error convergence during learning of the ball trajectory inclination
using PoWER. Vertical bars denote standard deviation of 100 runs

Fig. 6. Demonstrated and learned trajectories for the ball-in-a-cup game.
Subscripts 1 and 2 denote the first and second demonstration trajectory,
respectively.

throwing instance and error convergence for this experiment
are shown in Fig. 7 and 8, respectively. We can see that the
robot learns to hit the target in 4 roll-outs on the average.
The next experiment was ball-in-a-cup game learning, where
it took just 4 trails in average to learn the appropriate policy.
The error convergence of the real-robot experiment is shown
in Fig. 10. Fig. 9 shows the real robot during the ball-in-a-
cup game. The algorithms succeeded to learn the appropriate
action even in the case when we shortened the rope length

Fig. 7. Ball throwing setup

Fig. 8. Error convergence for the learning of ball throwing on a real robot.
Vertical bars denote standard deviation of 20 experiments.

from 0.37m to 0.35m. In this latter case it took 7 trails to
learn the right action.
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Fig. 9. Three sequences of the learning ball-in-a-cup game on Mitsubishi Pa10 robot. Sequences a) and b) show two demonstration trajectories respectively.
Learned action is shown in sequence c).

Fig. 10. Error convergence of the experimental results for the ball-in-a-cup
learning. Dashed line denotes mean value of 4 experiments

VI. CONCLUSIONS

In this paper we presented a three-stage approach to ex-
panding the database of sensorimotor knowledge. In the first
stage we generalize the available training data to compute a
control policy suitable for the current situation. This initial
approximation can be improved using learning on the manifold
defined by the training data. This enables us to perform rein-
forcement learning in a state space of reduced dimensionality.
Since it is not possible to guarantee that the optimal solution
is contained in this manifold, we explore the solutions outside
of this training manifold in the third stage. A state-of-the-art
reinforcement leaning technique PoWER was applied in this
stage. The proposed approach was verified both in simulation
on the real robot for the task of ball throwing and ball-in-a-
cup game. We demonstrated that the proposed approach can
result in faster learning rates.
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