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Abstract—In this paper we present a new methodology for
robot learning that combines ideas from statistical general-
ization and reinforcement learning. First we apply statistical
generalization to compute an approximation for the optimal
control policy as defined by training movements that solve
the given task in a number of specific situations. This way
we obtain a manifold of movements, which dimensionality is
usually much smaller than the dimensionality of a full space
of movement primitives. Next we refine the policy by means of
reinforcement learning on the approximating manifold, which
results in a learning problem constrained to the low dimensional
manifold. We show that in some situations, learning on the
low dimensional manifold can be implemented as an error
learning algorithm. We apply golden section search to refine
the control policy. Furthermore, we propose a reinforcement
learning algorithm with an extended parameter set, which
combines learning in constrained domain with learning in
full space of parametric movement primitives, which makes it
possible to explore actions outside of the initial approximating
manifold. The proposed approach was tested for learning of
pouring action both in simulation and on a real robot.

I. INTRODUCTION

Autonomy is one of the main unresolved issues in contem-

porary robotics. In order to create fully autonomous robots,

efficient and robust learning algorithms are indispensable.

This is especially true for humanoid robots with many de-

grees of freedom. Among the most promising paradigms are

imitation learning and reinforcement learning (RL). Robot

actions are often encoded using parameteric representations

with a large number of parameters, thus the search space

that reinforcement learning algorithms need to explore is

normally very large. Recently, new probabilistic algorithms

such as PI2 [1] and PoWER [2] were developed to deal with

sensorimotor learning in high dimensional spaces. Despite

of these advances, learning capabilities of modern robots

are still far from the learning capabilities of humans. While

humans can quickly adapt to new situations, robots often

have to re-learn the whole policy in a lengthy exploration

process, even when a good initial policy approximation is

provided. It turns out that the initial guess of search direction

in the learning process is in most cases more important

than the initial guess of the parameters itself. Approaches

dealing with the problem of how to make learning more

efficient often rely on reducing the number of parameters

to be learned.

It has been argued that in many cases the number of

parameters relevant for the task is rather small [3]. For

example, Scholz and Schöner [4] studied the stand-up task

in humans and found that the center of mass is among the

most relevant parameters. Ude et al. [5] generalized tasks

such as drumming, ball throwing, and reaching with respect

to a small number of characteristic parameters. Kormushev

et al. [6] dealt with archery skill using a humanoid robot

and suggested an algorithm, where the parameter update

is formed as a linear combination of parameters reweighed

according to the reward in previous roll-outs. Grollman and

Billard [7] proposed a learning method, where the search

space is constrained to the area between two unsuccessful

demonstrations. Kober et al. [8] developed an algorithm

where the control policy was improved by adapting a small

set of global parameters, called meta-parameters.

In our previous work [9] we exploited previous experience

to generalize to new policies and limit the search space for

reinforcement learning. The goal of this paper is to show

that the generalization function can provide a good initial

guess for the most promising search direction. Instead of

directly searching in the space of all policy parameters, the

proposed method generates the appropriate search direction

from previous examples. We show, that reinforcement learn-

ing in constrained domain can be represented as an error

learning algorithm [10]. In this case, the learning problem

turns into a problem of finding the zero of a unimodal

function, which enables us to use the well developed theory

of line-search algorithms [11], thus minimizing the number

of roll-outs required to learn the desired sensorimotor policy.

We evaluate these ideas on an upper-body humanoid robot,

where the robot has to learn how to pour a given quantity of

liquid into a glass from bottles containing different amounts

of liquid.

The paper is organized as follows. In the next section

we briefly present a statistical method for generalization of

actions from previous examples, where we used dynamic

movement primitives as the underlying movement represen-

tation. In Section III we introduce DMP parameter learning

in constrained domain using policy gradient reinforcement

learning. In the following section the error learning algorithm

is evaluated. Next section introduces simultaneous parameter

learning in the constrained domain and full unconstrained

domain by extending the parameters set. The paper concludes

with results obtained in simulation and on a real robot.
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II. ACTION GENERALIZATION FROM PREVIOUS

EXPERIENCES

We start with a set of robot movements Z = {Mi}
NumEx
i=1 ,

where each movement Mi results in a successful execution of

the task in a specific situation. The problem of generalization

to new situations can be solved if we can characterize

the task by a small number of characteristic parameters.

Lets denote these parameters, which are also called query

points, by qi ∈ R
m, i = 1, . . . , NumEx, where m is

the dimensionality of q. For this paper it is not important

how these initial movements are acquired, any standard

method from robotics can be used (manual programming,

programming by demonstration, reinforcement learning). To

become able to accomplish a task in any given situation, the

robot needs to learn a function that maps the query points

q into the parameters describing the required movement M,

i. e.

G(·;Z) : q 7−→ M. (1)

In the past we proposed different statistical approaches that

can be used to learn such a function [5], [12]. In all these

studies we encoded the robot movements M by dynamic

movement primitives (DMPs) [13].

III. POLICY LEARNING IN CONSTRAINED DOMAIN

The general goal of policy learning is to optimize the

policy parameters θ ∈ R
n maximizing the expected return

of the state value cost function

J(θ) = E

[

H
∑

k=0

akrk(θ)

]

, (2)

where k is the time step, ak are time-step dependent weight-

ing factors, H is the horizon which can be infinite and

rk is the reward received at each time step. θ are the

parameters describing the selected movement representation,

e. g. dynamic movement primitives. In all interesting cases,

the dimensionality n of the policy parameter space θ is sig-

nificantly larger than the dimensionality m of query points.

Policy gradient learning is a widely accepted alternative to

the value function-based reinforcement learning [14]. Here

we assume that our task can be described as an episodic

task. Policy gradient methods follow the steepest descent of

the expected return and the general parameter update rule

becomes

θm+1 = θm + αm∇θJ(θ), (3)

where αm denotes a learning rate. If the gradient estimate

is unbiased and the learning rate fulfills
∑

∞

m=0 αm > 0 and
∑

∞

m=0 α
2
m = const, then the learning process is guaranteed

to converge at least to a local minimum [15]. One of the

most important advantages of policy gradient methods over

traditional reinforcement learning techniques is that we can

easily control the size of the update step. This is important

because a drastic change of parameters can be hazardous

both for the robot and for its environment. Additionally,

drastic changes make the initialization of the policy based

on domain knowledge or imitation learning useless, as the

initial parameters can vanish after a single update step [16].

Policy gradient methods require a good estimator for the

policy gradient ∇θJ(θ). If a deterministic model of the

system was available, we could compute this gradient by

∇J =
∂
∑H

k=0 akrk

∂θ
(4)

Unfortunately, such a model is normally not available, there-

fore a number of policy gradient estimation methods were

proposed, such as finite gradient methods [15], likelihood

ratio methods [17], natural policy gradients [18], etc. Policy

gradient estimation becomes more difficult as the dimension-

ality of policy parameters increases, since a large number of

roll-outs has to be performed in order to accurately estimate

the gradient. However, if a sufficient amount of previous

experiences is available to perform statistical generalization

(like described in Section II), we can estimate a mapping

from some lower dimensional parameters q to the corre-

sponding policy parameters θ. Let assume that G (q;Z) is

an exact (ideal) generalization function, Ĝ (q;Z) its approxi-

mation, and that the relationship G (q;Z) = Ĝ (q+∆q;Z)
exists for some ∆q. Then the learning process defined in Eq.

(3) transforms into

qm+1 = qm + αm∇qJ(q), (5)

∇qJ ≈
∂
∑H

k=0 akrk

∂q
, (6)

where the dimensionality of q is much lower than the

dimensionality of θ.

IV. ERROR LEARNING

Now we assume that the success of our policy can be de-

scribed with a vector ε, which actually denotes the difference

between the desired query q0 and the measured query qm,

ε = q0 − qm. (7)

We define the final reward as either r = ε
T
ε or r = e−ε

T
ε

(see Fig. 1a). We further assume that our task has a finite

horizon, that ak = 1, that we can obtain only the final

reward, and that the partial derivative ∂qm

∂q
around any given

point is a known constant diagonal matrix K. Note that if

generalization as given by Eq. (1) is accurate, this matrix

becomes an identity matrix. In many other practical cases,

matrix K can be approximated by a diagonal and locally

constant matrix. Lets compute ∇qJ for both cases

∇qJ = −2
∂qm

∂q
ε ≈ −Kε, (8)

∇qJ = −2e−ε
T
ε
∂qm

∂q
ε ≈ −Ke−ε

T
ε
ε. (9)

This results in the update rule 1)

qm+1 = qm +Kε (10)

and 2)

qm+1 = qm + e−ε
T
εKε (11)
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Fig. 1. Reward and update function for both cases

The first update rule is the well known error-based learning

algorithm [10] and the second is its weighted version. The

second update rule prevents large parameter update at large

ε, as shown in Fig. 1b. Error learning requires appropriately

chosen gain matrix K, which might vary from case to case.

This is a problem for autonomous learning because we can

not afford to guess the learning parameters for each specific

case. If this mapping was linear, the statistical model used

for generalization would already be perfect and no learning

would be necessary. Error learning can be represented also as

a problem of finding the zero of a unimodal function, which

enables us to use the well developed theory of line-search

algorithms [11]. The line search finds the optimal step along

the computed gradient along which the objective function

qm will be reduced. The majority of line search approaches

require additional tuning parameters. In order to minimize the

number of roll-outs and to eliminate all tuning parameters,

we propose to use golden section search algorithm for finding

the zero of the function ε [19], since it requires a single roll-

out in each optimization step. The algorithms is explained

with the following pseudo-code.

Algorithm for error learning with golden section search

set search limits ql and qh

set desired query q0

set q = q0

repeat
generalize trajectory for query q

execute trajectory, get qm
calculate error ε = q0 − qm

if ε > 0
ql = q

q = ql + (qh − ql) ∗ 0.618
else
qh = q

q = ql + (qh − ql) ∗ 0.382
until ε < desired precision

V. POWER LEARNING IN CONSTRAINED DOMAIN

In general mapping G defines a low dimensional manifold

of control policies and it is possible that the optimal policy

for a newly observed situation is not contained in this

manifold. In such a case, learning in constrained domain

can only find an approximate solution. In [9] we proposed

to follow the learning in constrained domain by learning in

a high-dimensional space defined by all policy parameters.

For example, a typical control policy encoded by DMPs

requires 10 to 50 parameters for each joint, which makes

the search space huge. When we switch to learning in full

parameter space, the new learning process is started with a

better initial guess, but no other information is reused. Here

we propose how to further accelerate the learning process

by combining learning in constrained domain with learning

in full parameter space. For that, we assume the following

process model

θ = Ĝ (q̂;Z) + ∆θ (12)

Our goal is to learn such q̂ and ∆θ, which will maximize

the reward r. For that, we define an extended parameter set

in the form

θ∗ = [q̂,∆θ]T (13)

Recently, efficient methods which combine the well-

developed methods from statistical learning and empirical

inference with classical RL approaches were proposed [1],

[2]. Such algorithms can scale to significantly more complex

learning systems. For our experiments we selected PoWER

[2], which is a policy improvement method derived from an

expectation-maximization algorithm using probability match-

ing [20]. Unlike the policy gradient methods, it does not

require the tuning of the learning rate αm. The parameter

update in PoWER follows the rule

θ∗m+1 = θ∗m +
〈(θ∗

i
− θ∗m)r(τi)〉w(τi)

〈r(τi)〉w(τi)
(14)

where i denotes the i-th roll-out, r(τi) is the positive reward

accumulated from the trajectory τ in i-th roll-out and 〈〉w(τi)

denotes the importance sampling. Extended parameters θ∗
i

used in roll-outs are selected according to the stochastic

exploration policy

θ∗i = θ∗m + ǫi

ǫi ∼ [N (0, σ2
1),N (0, σ2

2)]. (15)

Noise variance σ2 is the only tuning parameter of the

PoWER algorithm, which has to be carefully selected to

obtain good learning results. The value is highly dependent

on the process parameters θ∗. Generally, higher values of σ2

speed up the learning and lower values of σ2 lead to more

accurate results. As shown in the previous section, learning

in constrained domain characterized by q benefits from faster

search because the search space is considerably smaller with

the proper choice of the constrained configuration space.
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Fig. 4. Experiment with a real robot: Convergence of the pouring error
and the learned query

during the execution of the pouring movement. Thus in

this case the learning in constrained domain only is not

appropriate and we therefore applied the full-space learning

method described in Section V. The demonstrated trajectories

in joint space were encoded as DMPs with 30 Gaussian

kernel functions for each joint trajectory. Thus, the total

number of θ∗ parameters (including query, kernel weights,

goals and duration) was 219. The reward function for this

case was r = 1− 5‖vd − vm‖ − 5vs, where r is the reward,

vd is the desired volume of the liquid in the glass, vm
is the measured poured volume and vs is the volume of

the spilled liquid. The constants in reward function were

selected in such a way that the reward was always positive.

We used three roll-outs for each parameter update and set

the importance sampler length to 3. Constants s1 and s2
for the parameter explorations were set to 0.2 and 0.05
respectively. Fig. 5 shows the mean value of the pouring

error, spilled volume, and the reward from 20 simulated

learning experiments, where we learned to pour from a bottle

containing 0.5 l of liquid. Note that each parameter update

requires three additional roll-outs, therefore we have four

roll-outs per parameter update We compared the results of the

proposed algorithm with ordinary algorithm, which searches

only in unconstrained parameters space. For that, we set

s1 to 0. Although both algorithms started with the same

parameter set, obtained from the initial generalization, our

algorithm outperforms the ordinary algorithm for a degree

of magnitude, as it can be seen form Fig 6. Similar results

were obtained with the real robot, where the volume of

the spilled liquid was determined as the difference between

liquid poured into the glass as measured with a precision

scale and the drop of the bottle volume, which was estimated

from the joint torque sensors of our robot. In this case

we encoded the trajectory of each joint with 10 Gaussian

kernel functions. The total number of learning parameters

was 79. The results of the real robot experiment using the

same learning parameters as simulated robot are displayed
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Fig. 5. Convergence of simulated pouring error, spilled volume and
the reward during the joint based learning. Vertical bars shows standard
deviation of 20 simulated experiments
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Fig. 6. Convergence of simulated pouring error, spilled volume and the
reward during the joint based learning using ordinary algorithm, which
searches only in unconstrained parameter space. Vertical bars shows standard
deviation of 20 simulated experiments

in Fig. 7. Results on a real robot are less accurate due to

the noise arising from the determination of the spilled liquid

quantity and the imprecise initial volume of the liquid (since

the bottle needed to be refilled manually). Despite of that,

learning on the real robot turned out to be faster than learning

in the simulated environment. This is due to the smaller

number of learning parameters used in the real experiment.
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In simulation, we also used a glass with an opening of half

the diameter.

The learning of pouring was considered also in [22],

where we learned to pour the whole bottle volume into a

glass. Although the pouring problem in this paper was more

demanding, we obtained a faster convergence rate due to the

proposed algorithms, which combine learning in constrained

and unconstrained domain.

VII. CONCLUSIONS

In this paper we presented a novel approach to reinforce-

ment learning in robotics. It combines ideas from statistical

generalization and standard reinforcement learning. In the

first stage we generalize the available training data to com-

pute a control policy suitable for the current situation. This

initial approximation is further improved using learning on

the manifold defined by the training data. This enables us to

perform reinforcement learning in a state space of reduced

dimensionality. Another advantage of the proposed algorithm

is that the direction of the parameter update is inferred from

the initial database containing the demonstration trajectories.

For the same reason, we can apply error learning, which

turns out to be the most effective learning method when at

least approximate direction of parameter update is available.

Although efficient, error learning can not be applied to all

learning problems, therefore we proposed a second approach,

which combines learning in constrained domain and learning

in full parameter space. The proposed approach was verified

both in simulation and on the real robot for the task where we

had to learn how to pour from a bottles containing different

volumes of liquid. Experimental results in simulation and on

the real robot demonstrate fast learning rates of the proposed

algorithms.
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