
Velocity adaptation for self-improvement of skills learned from user
demonstrations

Bojan Nemec1, Andrej Gams1,2 and Aleš Ude1

Abstract— We address the problem of how to increase the
speed of movements that occur in contact with the environment,
where the initial movements were acquired by kinesthetic guid-
ing. We take into account dynamic capabilities and constrains
of both the robot and the environment. This leads to a modified,
non-uniformly accelerated motion. To enable the non-uniform
modulation of the movement policy, we encode the initial control
policy using an extended formulation of dynamic movement
primitives. The initial policy is improved using feedback error
adaptation, ILC-based learning or reinforcement learning. We
propose a new policy learning algorithm which takes into
account intermediate rewards during the policy learning. The
proposed approach was experimentally evaluated on a bi-
manual kitchen task, where the robot, composed of two KUKA
LWR arms, had to assemble a cake decoration tool.

I. INTRODUCTION

The paper deals with the problem how to autonomously
improve skills obtained by learning from demonstration.
Note that humans do this all the time. A teacher demonstrates
a skill, often slowly, and then the subject tries to repeat it.
The first few attempts might be very slow or might even
fail. After that we generally try to improve the learned skill
and accelerate it, i. e. speed it up. During this process of
improvement, which is still essentially learning, we adapt
the motion pattern to our own dynamic capabilities [1].
Speeding up is not done uniformly. Some parts of the motion
pattern can be accelerated more, some less, depending on
our own kinematics and dynamics. During this adaptation
process, we change also the motion and force patterns and
stiffness/compliance patterns. In this paper we present an
algorithm that adopts this principle for robot learning and
self-adaptation.

Recently there were many approaches presented on how
to adapt the motion patterns learned by demonstration to the
robot agent [2], [3], [4], [5]. One of the key parameters when
executing tasks that involve interaction with the environment
is also stiffness [6]. Human behavior is characterized by a
low-gain compliant control with variable and task dependent
stiffness. This is one of the reasons why in most cases

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013
(Specific Programme Cooperation, Theme 3, Information and Communi-
cation Technologies) under grant agreement no. 269959, IntellAct, and by
Sciex-NMSCH project 12.018.

1 Department of Automatics, Biocybernetics and Robotics, Hu-
manoid and Cognitive Robotics Lab, Jožef Stean Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia, bojan.nemec@ijs.si,
andrej.gams@ijs.si, ales.ude@ijs.si

2 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne,
Station 14, CH-1015 Lausanne, Switzerland

humans significantly outperform robotic systems when in-
teracting with the environment [7]. Therefore, it is natural to
extend the concept of variable stiffness to robotics. Although
the appropriate stiffness pattern could be demonstrated, it
is questionable how to transfer the stiffness of the human
demonstrator to robotics systems due to intrinsically different
dynamic properties of human and robot arms. Alternatively,
the impedance can be autonomously learned by means of
reinforcement learning [8].

In this paper we propose a new approach to the self-
adaptation and self-improvement of the learned movement
policy. Besides learning the appropriate trajectory, force, and
stiffness patterns, we also adapt the speed of task execution.
Our approach relies on dynamic movement primitives (DMP)
representation of the policy [9], which provides the ability
to modify the velocity along the trajectory.

This leads to a more general approach on how to improve
the motor knowledge. The overall procedure can be summa-
rized in the following steps:

1) Acquire an initial example movement that successfully
solves the given task. This can be accomplished for
example by direct imitation [10] or kinesthetic guiding
[11].

2) Determine the stiffness pattern (as for example in [8]).
3) Adapt the velocity pattern (this paper).
4) Record the force/torque patterns along the resulting

trajectory [12].
5) Transfer the resulting trajectory to a new configuration

and adapt it if to perform the recorded force/torque
pattern [12].

In our approach, the execution speed is encoded as a
function of the phase and learned by means of reinforcement
learning. For this purpose, we propose a reinforcement learn-
ing algorithm based on PoWER, capable to take into account
also intermediate rewards. This is the second contribution
of this paper. We also considered iterative learning control
(ILC) and feedback control approaches for the same task.
The proposed methodology and algorithms were tested on a
bi-manual task taken from the kitchen, where the robot has
to assemble a cake decoration tool.

The paper is organized as follows. In section II we briefly
outline the dynamic movement primitives, which are used
as a underlying representation of motion patterns describing
the policy. In Section III we present an extension to the
reinforcement learning algorithm PoWER, which introduces
intermediate rewards in episodic tasks. Learning of the ap-
propriate speed profile is considered in section IV, where we

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 European Union 423

propose three approaches: 1) standard feedback control 2) an
approach using iterative learning control, and 3) adaptation
with extended PoWER. Experimental results in chapter V
demonstrate the effectiveness of the proposed approaches
for a bimanual task of assembling a cake decoration tool,
which involves hard contacts. Finally, we conclude with a
brief discussion on the preferred movement-policy speed
adaptation method.

II. LEARNING BY DEMONSTRATION USING DMPS

Our approach relies on a parameterized policy using
dynamic movement primitives [9]. Within this framework,
every degree of freedom is described by its own dynamic
system, but with a common phase to synchronize them.
For point-to-point movements (also referred to as discrete
movements), given either in joint or in task space, the
trajectory of each robot degree of freedom y is described
by the following system of nonlinear differential equations

τ ż = αz(βz(g − y)− z) + f(x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx, (3)

where x is the phase variable and z is an auxiliary variable.
αx, αz , βz and τ should be be defined in such a way
that the system converges to the unique equilibrium point
(z, y, x) = (0, g, 0). The nonlinear term f contains free
parameters that are used to modify the dynamics of the
second-order differential equation system to approximate any
smooth point-to-point trajectory from the initial position y0
to the final configuration g

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x, Ψi(x) = exp
(
−hi (x− ci)2

)
,

(4)
with the given initial velocity and final velocity equal to zero.
Here ci are the centers of radial basis functions distributed
along the trajectory and hi > 0 their widths. Weights wi are
estimated in such a way that the DMP encodes the desired
trajectory. In the equations above, αx, αz , and βz are con-
stant. They are set so that the underlying second order linear
dynamic system is critically damped [13]. Throughout this
paper we use DMPs to encode Cartesian space trajectories.

One of the advantages of DMPs is that they can be
modulated both spatially and temporally without changing
the overall shape of motion. Ijspeert et al. [9] describe slow-
down feedback, where the robot is automatically halted on
excessive position error. In [12] this principle was used to
slow down the trajectory execution on excessive forces and
toques.

Here we propose to extend the original DMP equations
(1) – (3) by an additional temporal scaling factor ν

ν(x)τ ż = αz(βz(g − y)− z) + f(x), (5)
ν(x)τ ẏ = z, (6)
ν(x)τ ẋ = −αxx. (7)

The scaling factor ν(x) is a function of phase and is repre-
sented by a linear combination of M radial basis functions

ν(x) =

∑M
j=1 wjΨj(x)∑M
j=1 Ψj(x)

x. (8)

Initially, the weights wj for ν are set so that ν(x) ≈ 1, ∀ x,
using regression. Note that here the centers and widths of
radial basis functions Ψi are in general different than in
(4). Optimal values for kernel weights wj are determined
as described in chapter IV.

III. POLICY LEARNING WITH EXTENDED POWER

In order to make robots truly autonomous, they should
be able to learn or adjust control policies based on the
feedback arising from the dynamic interaction with the
varying environment. The general goal of policy learning
can be described as an optimization process, where the goal
is to determine policy parameters θ ∈ Rn, such that they
maximize the expected return of the state value cost function

J(θ) = E

[
H∑
k=0

akrk(θ)

]
. (9)

E denotes the expectation value, k is the time step, ak are
time-step dependent weighting factors, H is the horizon,
which in case of DMPs is equal to the number of sampling
steps along the trajectory, and rk is the reward received at
each time step. θ are the parameters describing the selected
movement representation, e. g. DMPs. There are numerous
methods how to optimize the above cost function, for exam-
ple finite gradient methods, likelihood ratio methods, natural
policy gradients, to name just a few [14]. The main problem
is high dimensionality of parameters to be learned. For
example, a typical control policy encoded by DMPs might
require 30 to 50 parameters for each joint, which makes the
search space huge. Recently, new stochastic methods PI2 and
PoWER, which combine the well-developed methods from
statistical learning and empirical inference with classical
reinforcement learning (RL) algorithms, were proposed [15],
[16]. Such algorithms can scale to significantly more com-
plex learning systems and minimize the number of tuning
parameters. Gradient and probabilistic learning algorithms
were evaluated in [15]. It was formally and experimentally
proven that PI2 and PoWER learning algorithm perform
essentially identically in cases where only terminal reward is
available during the episodic policy learning. PI2 performs
better when intermediate rewards are available. On the other
hand, with PoWER it is very easy to incorporate also other
policy parameters [17], not just shape parameters w, as is
the case with PI2. This motivated us to propose the extension
of the PoWER algorithm for cases where at least some
intermediate rewards can be obtained during the exploration
of an episodic (finite horizon) task.

Let πl be the trajectory executed in the l−th rolout and
πl,k the part of the trajectory πl from its beginning until the
phase x(tk), where tk is the time at index k. The parameter

424

update in Extended PoWER follows the rule

θm+1 = θm + γ
〈(θl − θm)φ(πl)〉w(πl)

〈φ(πl)〉w(πl)
+ (10)

(1− γ)

∑H
k=0

〈(θl,k−θm)r(πl,k)〉w(πl,k)

〈r(πl,k)〉w(πl,k)
g(tk)∑H

k=0 g(tk)
,

where φ(πl) is the terminal reward accumulated in l-th roll-
out, r(πl,k) is the intermediate reward obtained from the
trajectory πl,k in l-th roll-out at the time tk, k = 0, . . . ,H ,
H is the number of sampling steps on the trajectory, g(tk)
are the scaling factors related to the nonlinear part of the
DMP defined in Eq. (4),

g(tk) =

N∑
n=1

x(tk)Ψn(x(tk)), (11)

and γ is the discount factor. 〈〉w(πl) denotes the impor-
tance sampling. Parameters θl used in roll-outs are selected
according to a stochastic exploration policy, θl = θm +
εl, εl ∼ N (0, σ2). The update rule is the sum of parameter
exploration in each roll-out weighted by its return.

The role of importance sampling is to minimize the
number of roll-outs, which are needed to estimate new
policy parameters. Additionally, it automatically rejects un-
successful roll-outs, which can be caused, for example, by
false sensor readings. It allows the RL algorithm to re-use
previous most successful roll-outs πl during the estimation
of the new policy parameters θm+1. Importance sampler
sorts all past parameters update by descending order of their
return, and rejects less successful ones and re-weights past
explorations according to previous estimate θm [18], [19].
Like the original PoWER, also the extended algorithm is
a probabilistic policy improvement method which can be
derived from an Expectation-Maximization framework using
probability matching [20]. Intuitively, we can regard this
algorithm as multiple PoWER algorithms that use inter-
mediate rewards r as final rewards for trajectory sections
starting at t0 and ending at tk, k = 0, . . . ,H, and weighted
with basis functions g(tk). The proposed algorithm has one
additional parameter γ, which weights terminal reward φ
and intermediate rewards r. Tuning of this parameter is very
intuitive, it simply denotes how much we trust the terminal
and intermediate rewards, respectively. For example, value
0.5 means that they are given equal weights.

IV. LEARNING OF THE SPEED PROFILE

The goal of modifying the speed profile is to accelerate the
task execution, thus assuring a quicker accomplishment of
the task. We assume that initially a Cartesian space trajectory,
which successfully accomplishes the task, has been provided
and encoded as a DMP. The main idea is simple: increase the
speed of task execution until some essential task parameters
are violated. In assembly tasks such a parameter might be the
contact force. Contact force can be successfully detected us-
ing various force-torque sensors mounted on the robot wrist,
joints, or the tool itself. Therefore it is worth considering
learning of the speed profile as a feedback control problem.

A. Speed profile adaption using feedback error

In order to determine the speed profile, we first define an
error function. A suitable error function to adapt the speed
of motion is given by

e(xk) = ξν(νmin−ν(xk))−ξf‖f(xk)‖−ξm‖m(xk)‖, (12)

where ν is the temporal scaling factor, f is the vector of
contact forces, m is the vector of contact torques, νmin > 0
is the lower bound for the temporal scaling factor, xk is the
phase along the trajectory at step k, xk = x(tk) and ξν , ξf
and ξτ are the corresponding weighting factors. Note that the
scale factor ν < 1 speeds up the task execution and ν > 1
actually slows it down. The drawback of this error function
is that it penalizes also forces that might be advantageous,
e. g. forces required by the given assembly task. Therefore,
weighting scalars ξf and ξm are defined as

ξf,m =

{
0, if ‖f‖ < fmax, ‖m‖ < mmax

ξf,m ,
(13)

where fmax and mmax are maximal allowable force and
torque norms. A simple PI control law yields the following
update rule for the temporal scaling factor

ν(xk) =

{
ν(xk−1) +Ke(xk), ν(xk) > νmin

νmin, otherwise
, (14)

where K is the proportional gain scalar. The error feedback
approach has a serious drawback, which is that it can not
prevent large force peaks due to the impact. Although these
force peaks are affected by the quality of the robot trajectory
and force control, they can not be canceled using only the
force feedback signal. In order to prevent large force peaks
arising from the impact, the robot should anticipate when
they will occur. In order to solve this problem, we the apply
iterative learning control framework ([21], [22]) in the next
section.

B. Speed profile adaptation using ILC-based approach

Humans can acquire skills by repeating the same action
over and over again. The same principle can be adopted also
in machine motor control, when a system follows a similar
trajectory repeatedly. In this case, the information about the
tracking error can be used to improve performance in the
next repetition of the same trajectory. This is the basic idea of
the iterative learning control (ILC, [21], [22]). Standard ILC
assumptions include: 1) Stable system dynamics, 2) System
returns to the same initial conditions at the start of each trial,
3) Each trial has the same length. The third assumption could
be problematic in our case, since we change the execution
speed, therefore each trial has a different duration. However,
we defined the temporal scaling factor ν as the function of
phase in Eq. (7), thus we can sample ν the same number
of times in every trial. Applying the ILC framework, the
temporal scaling factor is learned as

ν(xk, j + 1) = κ(ν(xk, j) + η1e(xk+1, j) (15)
+ η2e(xk+2, j)),

425

where x denotes the phase, k is the time step, j is the learning
iteration index and κ, η1, and η2 are the corresponding gains.
Our implementation of ILC uses error signals e(xk+1, j) and
e(xk+2, j) to anticipate the disturbance caused by the impact
and compensate it with the time scale ν(xk, j + 1).

C. Speed profile adaptation using reinforcement learning

In the previous subsections we showed how to learn the
temporal scaling factor ν as continuous function of phase x.
In this chapter we learn ν as a parameterized policy by de-
termining the weight vector w using reinforcement learning.
For this purpose we apply the extended PoWER algorithm,
presented in chapter III. First, we have to define the reward
function, which has to be strictly positive and integrate to a
finite number. A suitable choice of the intermediate reward
function is

r(xk) =
1

1 + |e(xk)|
, (16)

where e(xk) is defined with Eq. (12). Terminal reward is
chosen as

φ =

∑H
k=1 r(k)

Γ
, (17)

where Γ equals to 1 in the case of successful accomplishment
of the task, or is a large positive value which penalizes the
failure of task. Parameters w of the temporal scaling factor
ν(x) from Eq. (8) are then learned using Extended PoWER
update rule (Eq. 10), where θ = w. In order to reduce
the computational burden and enhance the robustness of the
estimation, we divided the phase of the original demonstrated
trajectory x = [1, exp(−αxτ)] into M−1 temporally equally
spaced intervals using equation

xk = exp(−αxtk), tk =
k

M − 1
τ, k = 0, . . . ,M−1, (18)

and the reward r(xk) was averaged over the phase interval
[xk−1, xk+1]. τ denotes the duration of the original demon-
strated trajectory and M is the number of the radial basis
functions in Eq. (8), respectively. In such a way, tk are placed
at the centre of the radial basis functions and the horizon H
equals to M − 1.

V. EXPERIMENTAL EVALUATION ON KITCHEN SCENARIO

The proposed speed modulation methods were tested in
a bimanual kitchen task, where the robot had to assemble
a cake decoration tool. More precisely, it has to insert the
piston into the barrel containing the creme, marmalade, etc.
(see Fig. 1). The experimental setup was composed of two
Kuka LWR robot arms, the left one equipped with a three
finger Barret hand, and the right one with a two fingered
TBK RH707 hand. The barrel was firmly held by the Barret
hand, while the piston was grasped with the two fingered
hand. Cake decoration injection tool was an off-the-shelf
commercial product bought in the grocery store. The whole
setup is shown in Fig 2.

The initial trajectory was obtained by kinesthetic guiding,
where the operator freely moves the robot’s tool centre
point along the desired trajectory in gravity compensation

Fig. 1. Cake decoration tool

Fig. 2. Experimental setup

mode. The trajectory was measured in Cartesian space using
quaternions to encode the orientational part. Each position
/ orientation dimension was encoded as a single DMP with
a common phase using 20 Gaussian kernel functions (M =
20). Note that we encoded each quaternion component as
a single DMP, therefore the resulting quaternion had to be
normalized after each integration step. The exact solution
was proposed in [23], but since we confirmed experimentally
that the differences between both approaches are negligible,
we use Eq. (5, 6) also for quaternion integration. Such an
approach simplifies the implementation.

In this experiment we didn’t learn robot stiffness param-
eters. The Cartesian stiffness was fixed all the time and set
to [2000, 2000, 1000] N/m for the positional axes and to
[300, 300, 300] Nm/rad for the rotational axes, respectively.
The trajectory was carefully demonstrated and learned in
such a way, that the contact forces between the piston and the
barrel were minimized. During the execution, higher contact
forces arose due to the trajectory tracking errors as a result
of the increased velocity of the recorded trajectory.

We have also implemented a safety procedure, which
interrupts the trajectory if high contact forces are detected.
In order to prevent damage to the robot and other equipment,
which might occur at high velocity impacts, the lower limit
of the temporal scaling factor ν was set to 0.4. Parameter
settings for all experiments in this paper are summarized
in Table I. First we tested temporal scaling adaptation
using feedback error, as described in Section IV-A. After
adaptation, the robot did not succeed to insert the piston into
the barrel due to a large trajectory tracking error, which was
caused by excessive temporal scaling factor ν learned by the
proposed approach. Note that lower gain K resulted only in
a slower adaptation, so lowering the gain did not help. In
order to accomplish the given task with this approach, we
had to additionally limit the temporal scaling factor ν to 0.6.

426

TABLE I
PARAMETER SETTINGS USED IN ALL EXPERIMENTS

minimal scale factor νmin 0.4
maximal force fmax 5 N
maximal torque mmax 0.2 Nm
temporal scaling ξν 10
force scale ξf 1
torque scale ξm 10
P gain K 0.01
ILC gain κ 0.98
ILC gain η1 0.06
ILC gain η2 0.04
exploration noise σ2 0.7
discount factor γ 0.5
number of kernels N 20
number of kernels M 20
sampling time ∆t 0.01 s

0 1 2 3 4 5 6
0

0.5

1

x

0 1 2 3 4 5 6
0.5

1

1.5

ν

0 1 2 3 4 5 6
0

5

10

||
f
||
(N

)

time(s)

Fig. 3. Phase, temporal scaling factor, and the resulting force norm using
feedback error adaptation

Fig. 3 shows that the algorithm increased the velocity in the
no-contact zone and reduced it when the contact arose. The
total speed-up of the given trajectory was by a factor of 1.47.
As discussed earlier, the main problem with this approach is
that it can not anticipate impacts, since this would require
prediction.

The next experiment was executed under the same condi-
tions using ILC-based approach, as presented in Section IV-
B. We performed 5 learning iterations (roll-outs). Results are
shown in Fig. 4 As we can see, the ILC approach anticipates
the contact force error and can successfully slow down the
execution of the task prior to the occurrence of high contact
forces. It is worth mentioning that the ILC approach can also
learn from unsuccessful attempts, when the trajectory was
interrupted due to excessive contact forces. High forces and
consequently high errors occurred when the robot has missed
to insert the piston into the barrel. This error is than used in
the next iteration to modify the temporal scaling factor. Here,
a problem arises how to recover the control and the error
signal when the trajectory was interrupted. In such a case,
the missing part of the control and error signal was recovered
from the last successfully executed iteration. The average

speed up factor was 1.9 with ILC approach. In summary, the
ILC approach performs substantially better comparing to the
approach based on feedback error. It learns better temporal
scaling profile, can set the proper initial values, and learns
in smaller increments, which is safer for both the robot and
the environment.

0 2 4 6 8
0

0.5

1

x

0 2 4 6 8
0.5

1

ν

0 2 4 6 8
0
5
10
15

||
f
||
(N

)
time(s)

1
2
3
4
5

Fig. 4. Phase, temporal scaling factor, and the resulting force norm using
the ILC-based approach. Numbers 1-5 in the legend denote the learning
iterations

The last experiment was performed using reinforcement
learning as described in subsection IV-C. In this case, the
only tuning parameter is the exploration noise σ2. We
performed 40 roll-outs of the experiment, each 10th was
executed without the exploration noise in order to check the
convergence of the learning algorithm. The results are shown
in Fig. 5. The average speed up factor was 1.75 with the RL
approach, which is lower than with ILC approach. On the
other hand, the RL approach generated smoother velocity
profile, results in lower force/torque norm and required less
tuning, therefore we consider this approach favorable, even
though the number of trials was considerably higher than
with the ILC-based approach. Fig. 6 shows collected terminal
rewards during learning. Red circles denote roll-outs without
the exploration noise. Red crosses denote roll-outs, where the
execution was interrupted due to the excessive contact forces.
Experimental results show that if we continue to explore
performing additional roll-outs, more and more attempts will
be unsuccessful. This can be explained by the fact that the
system has already learned the optimal temporal scaling
factor ν(x) and exploration often results in failure due to
excessive scaling.

VI. CONCLUSIONS

In the paper we proposed a new approach to self-
adaptation of a given control policy. We focused on speed
adaptation. For this purpose, we considered three differ-
ent approaches: 1) feedback error adaptation, 2) ILC-based
approach, and 3) reinforcement learning. We proposed an
extension to the reinforcement learning algorithm PoWER,

427

0 1 2 3 4 5
0

0.5

1
x

0 1 2 3 4 5
0

1

2

ν

0 1 2 3 4 5
0

5

10

||
f
||
(N

)

time(s)

Fig. 5. Phase, learned temporal scaling factor and the resulting force norm
using reinforcement learning

0 10 20 30 40
3.5

4

4.5

5

5.5

φ

rollouts

Fig. 6. Terminal rewards collected during reinforcement learning. Red
circles denote roll-outs without the exploration noise. Red crosses denote
roll-outs, where the execution was interrupted due to the excessive contact
forces.

which uses also intermediate rewards for policy updates.
The benefit of the proposed algorithm is not only faster
learning, but also lower estimated parameter variation. Ex-
perimental evaluation has shown that the direct learning
of feedback error is less appropriate for optimizing the
speed of the control policy. Both Iterative learning controller
and reinforcement learning proved to be effective for this
purpose. The advantage of reinforcement learning is that it
is model-free and does not require many tuning parameters.
In our experiments, the initially demonstrated policy was
carefully learned in order to be fast and to exhibit low contact
forces. Despite of that, the proposed algorithms were able to
substantially speed up the task execution. Failures during the
experiments occurred mainly due to high contact forces as a
result of poorer tracking error at higher velocities.

Note that we allowed the robot to deviate from the
originally learned trajectory during task execution. In many
cases, some trajectory tracking error is acceptable, e. g.
during non-contact approach and depart movements. It is far
more important that the task is accomplished quickly and
successfully.

REFERENCES

[1] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of
sensorimotor learning.” Nature reviews. Neuroscience, vol. 12, no. 12,
pp. 739–51, Dec. 2011.

[2] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, pp. 682–697, 2008.

[3] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Trans. Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[4] F. Stulp, E. Theodorou, and S. Schaal, “Reinforcement learning
with sequences of motion primitives for robust manipulation,” IEEE
Transactions on Robotics, vol. 28, no. 6, pp. 1360–1370, 2012.

[5] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Autonomous Robot, no. 4, pp. 361–379, 2012.

[6] E. Burdet, K. P. Tee, I. M. Y. Mareels, T. E. Milner, C.-M. Chew, D. W.
Franklin, R. Osu, and M. Kawato, “Stability and motor adaptation in
human arm movements,” Biological Cybernetics, vol. 94, no. 1, pp.
20–32, 2006.

[7] S.-K. Yun, “Compliant manipulation for peg-in-hole: Is passive com-
pliance a key to learn contact motion?” in IEEE International Con-
ference on Robotics and Automation, Pasadena, California, 2008, pp.
1647 –1652.

[8] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning vari-
able impedance control,” International Journal of Robotics Research,
vol. 30, no. 7, pp. 820–833, 2011.

[9] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[10] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous
Systems, vol. 47, no. 2-3, pp. 93–108, 2004.

[11] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[12] B. Nemec, F. Abu-Dakka, J. A. Jørgensen, T. R. Savarimuthu,
B. Ridge, J. Jouffroy, N. Krüger, and A. Ude, “Transfer of assembly
operations to new workpiece poses by adaptation to the desired
force profile,” in IEEE International Conference on Advanced Robots,
Montevideo, Uruguay, 2013.

[13] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs.
optimal control – a unifying view,” Progress in Brain Research, vol.
165, no. 6, pp. 425–445, 2007.

[14] J. Kober and J. Bagnell, D.and Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotics Research, 2013.

[15] E. A.Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, no. 11, pp. 3137–3181, 2010.

[16] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Proc. IEEE Int. Conf. Robotics and Automation, Kobe, Japan, 2009,
pp. 2112 – 2118.

[17] B. Nemec, D. Forte, R. Vuga, M. Tamošiūnaitė, F. Wörgötter, and
A. Ude, “Applying statistical generalization to determine search direc-
tion for reinforcement learning of movement primitives,” in 2012 12th
IEEE-RAS International Conference on Humanoid Robots, Osaka,
Japan, 2012.

[18] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[19] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the
skill of archery by a humanoid robot iCub,” in Proc. IEEE-RAS
International Conference on Humanoid Robots, Nashville, USA, 2010.

[20] P. Dayan and G. Hinton, “Using expectation-maximization for rein-
forcement learning,” Neural Computation, vol. 9, 1997.

[21] K. L. Moore, Y. Chen, and H.-S. Ahn, “Iterative learning control: A
tutorial and big picture view,” in Decision and Control, 2006 45th
IEEE Conference on, dec. 2006, pp. 2352 –2357.

[22] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” Control Systems, IEEE, vol. 26, no. 3, pp. 96 –
114, june 2006.

[23] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online move-
ment adaptation based on previous sensor experiences,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, Sept., pp. 365–371.

428

