
Synthesizing Compliant Reaching Movements by Searching a Database

of Example Trajectories

Miha Deniša1, Tadej Petrič1, Tamim Asfour2, and Aleš Ude1,∗

Abstract— We address the problem of generating new com-
pliant reaching movements by searching a structured database
of example trajectories. The proposed control framework is
a multi-step process, where in the first step a human tutor
teaches the robot how to perform a set of example reaching
movements. In the second step, the recorded motion trajectories
are executed with different velocities using a high gain feedback
controller, for the purpose of learning corresponding torque
control signals. The commanded torques are measured and
stored together with the trajectory data. This data is organized
in a hierarchical, graph-like structure, thereby providing the
basis for search for new compliant trajectories, which can
consist of parts of the previously acquired example movements.
The proposed approach can construct a complete representation
for newly discovered movements, including the feedforward
torque commands. Finally, in the last step, the motion is
executed using a low gain feedback controller and the associated
feedforward torque signal. This ensures sufficient tracking
accuracy and at the same time compliant behavior, which
allows smooth interaction with the environment and is safe
for cooperative task execution with humans. The usefulness of
the proposed method was shown on a Kuka LWR robot.

I. INTRODUCTION

A well established approach for dynamic robot control

is the use of inverse dynamic models [1]. However, due

to the increasing complexity of robot mechanisms such as

humanoid robots, the accurate dynamical models are often

difficult to obtain. To fulfil the gap, algorithms for machine

learning were adopted in robotics because of their ability

of learning complex models. Although learning algorithms

became powerful enough to learn even the inverse dynamics

[2], they still require a large amount of data for learning.

As an alternative, different biology inspired methods were

proposed for dynamic robot control. An extensive review of

computational mechanisms for sensorimotor control, which

covers methods from optimal feedback control [3] to the

forward models and predictive control [4], was recently

published by Franklin and Wolpert [5].

Inspired by the human sensorimotor ability, which can

learn arbitrary dynamic tasks, we propose a new control

∗The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013
(Specific Programme Cooperation, Theme 3, Information and Communi-
cation Technologies) under grant agreement no. 270273, Xperience, and
from the Slovenian Research Agency under grant agreement no. J2-4284.

1 M. Deniša, T. Petrič, and A. Ude are with the Jožef Stefan Institute, De-
partment of Automatics, Biocybernetics and Robotics, Humanoid and Cog-
nitive Robotics Lab, Ljubljana, Slovenia miha.denisa@ijs.si,
tadej.petric@ijs.si, ales.ude@ijs.si

2 T. Asfour is with the Karlsruhe Institute of Technology, Institute for An-
thropomatics, High Performance Humanoid Technologies Lab, Karlsruhe,
Germany asfour@kit.de

framework that is based on learning a task dependent tra-

jectory with corresponding control signals. The proposed

framework is a multi step process, where in the first step,

human tutor teaches the robot how to perform the desired

task, e. g. a reaching movement. In the second step, the

corresponding task dependent control signals are learned by

executing the movement using a high gain feedback control

loop, which ensures sufficient tracking accuracy. In the last

step, the desired reaching movement is executed using the

feedforward task dependent control signal and low gain feed-

back loop, which ensures compliance and stability. Because

of the feedforward compensation, the robot will perform the

desired task with similar accuracy as in the second step.

Due to the low feedback gain, the robot exhibits a compliant

behavior with low perturbation rejection, therefore it is safer

for humans to work with.

However, just building a database of movements with the

associated control signals might not be an optimal solution.

It is not feasible to obtain all the necessary movement trajec-

tories and their task dependent control signals for the entire

workspace based on user demonstrations only. In this paper

we propose to augment the set of available movement prim-

itives by a hierarchical database search. A set of movement

trajectories, which partly share a similar course of movement,

can be used to discover new movements. Such an approach

can significantly reduce the teaching effort, since a database

that contains various example motions with similar sections

can be used to generate new, not previously demonstrated

movement trajectories. Through the hierarchical database

search, new behaviors can be discovered, generated and

eventually added to the database.

The proposed hierarchical search for new movement prim-

itives is based on the work done mainly in the computer

graphics community, which has long studied how to utilize

large databases of diverse movements. This is in contrast to

most of the work done in robotics, which is primarily focused

on learning from a single demonstration [6] or learning

from multiple demonstrated variations of the same type of

movement [7]. It was shown that by organizing movements

in motion graphs, smooth transitions between interconnected

full-body movements can be found [8]. This approach was

applied by Kovar et al. [9] to generate different styles of

locomotion along arbitrary paths. In robotics, a graph-based

representation similar to motion graphs was used by Yamane

et al. [10]. They combined transition graphs with a binary

tree database in order to generate human body locomotions.

This research was later expanded to plan object receiving

motions [11].

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 540

Besides in Yamane et al. [10], movement generation from

trajectory libraries has also been investigated in [12], [13],

[14], [15]. Like in our work, graph search is utilized in [12],

but this work is focused on locomotion. Ude et al. [13] used

variations of the same primitive movement to generate a new

instantiation of a dynamic movement primitive that is optimal

for a given situation. Like in [13], a situation descriptor is

used also in [14] to transfer previously optimized trajectories

to new situations. Mülling et al. [15] studied the problem

of mixing dynamic movement primitives to generate optimal

striking movements. The work described in this paper is most

closely related to [10], [11] because our focus is on how to

generate new dynamic movement primitives from parts of

previously acquired example trajectories.

The rest of the paper is organized as follows. In Section II

an approach for compensating robot dynamics is presented. It

consists of Section II-A describing task trajectory learning,

Section II-B describing learning of torque control signals,

and Section II-C that deals with the learned trajectory

execution. Section III proposes an approach for discovering

new movement primitives thorugh hierarchical graph search.

This is accomplished by building a database (Section III-

A) and then using it to find and synthesize new compliant

movements (Section III-B). The paper concludes with exper-

imental results and conclusions.

II. COMPENSATION OF ROBOT DYNAMICS

To compensate for robot dynamics, we normally apply a

generic approach which is based on inverse dynamical model

of the robot. Assuming that the robot consists of rigid bodies,

the joint space equations of motion are given by

H(qqq)q̈qq+C(qqq, q̇qq)+ggg(qqq)+ εεε(qqq, q̇qq, q̈qq) = τττ , (1)

where qqq, q̇qq and q̈qq are the joint positions, velocities and

accelerations, respectively, H(qqq) is the inertia matrix, C(qqq, q̇qq)
are the Coriolis and centripetal forces, ggg(qqq) are the gravity

forces and εεε(qqq, q̇qq, q̈qq) are the nonlinearities not considered in

the rigid body dynamics, e. g. friction. We denote the inverse

dynamic model of the robot (1) as fdynamic(qqq, q̇qq, q̈qq). Using

the inverse dynamic model, a possible control approach for

tracking the desired joint positions qqqd is given by

τττcmd = K(qqqd −qqq)+D(q̇qq)+ fdynamic(qqq, q̇qq, q̈qq), (2)

where K is the diagonal matrix for stiffness and D(q̇qq) is

the damping term. Note that high values in matrix K stiffen

the robot, which results in better tracking and error rejection

in case of perturbations. On the other hand, if the stiffness

values are low, the robot is compliant but the tracking

accuracy might be poor.

To have both advantageous properties, i. e. accurate track-

ing and compliance, we proposed a new multi-step control

system which includes feedforward torque signal that cor-

responds to the desired trajectory. Essentially, it is a pre-

generated internal model-based control system. However,

instead of using a complete inverse dynamic model for

compensating the robot dynamics as usually, we use a set of

layers based on dynamic movement primitives, which encode

the information of the torque control signals alongside with

the desired path (motion trajectories). The main advantage

of the proposed control system is that is model free, i. e.

the dynamic model of the robot is not needed. Moreover,

since torque signal that corresponds to the desired task are

feedforward during the execution step, the high tracking ac-

curacy and natural compliant behavior are achieved. Natural

compliance is the compliance of the mechanism itself. The

proposed control system ensures that the robot is always

compliant during the execution of the task, thereby ensuring

that the collision contact forces are small and therefore the

robot can perform tasks in unstructured environment and

safely interact with humans.

A. Learning task trajectories

In the first step, the goal is to learn the motion trajecto-

ries (positions) demonstrated by a human teacher. Different

techniques exist for teaching a desired motion to the robot;

one can use kinesthetic guiding [16], haptic interfaces [17],

motion capture systems [18], [19], etc. Kinesthetic guiding

was used in this paper.

To encode motion trajectories, we use Dynamic Movement

Primitives (DMPs). They are summarized in [6]. The equa-

tions below are valid for one degree of freedom (DOF). For

multiple DOFs the equations can be used in parallel. For one

DOF they are defined by the following nonlinear system of

differential equations

τdmpv̇ = αz(βz(g− y)− v)+ f (x), (3)

τdmpẏ = v. (4)

The linear part of Eq. (3) – (4) ensures that y converges to the

desired final configuration, here denoted as g. The nonlinear

part f (x) modifies the shape of the movement and is defined

by a linear combination of radial basis functions

f (x) =
∑N

i=1 wiψi(x)

∑N
i=1 ψi(x)

(5)

ψi(x) = exp(−hi(x− ci)
2), (6)

where ψi defines the basis functions with centers at ci and

widths hi > 0. As seen in Eq. (5), f (x) is not directly time

dependent. Instead, phase variable x defined in Eq. (7), with

initial value x(0) = 1, is used to make the dependency more

implicit:

τdmpẋ =−αxx (7)

The phase is common across all DOFs. By specifying the

time evolution through phase, it becomes easier to stop the

clock in case of external perturbations, which cause the robot

to deviate from the desired trajectory. It can be shown that

– given the properly defined constants αz, βz, τdmp, αx > 0

– the above system is guaranteed to converge to the desired

final configuration g.

We can encode demonstrated trajectories as DMPs by

applying locally weighted regression and learn the target

function defined as

f j(t) = τdmpq̈ j(t)+ τdmpαyq̇ j(t)−αyβy(g−q j(t)), (8)

541

where q j(t) denotes the demonstrated trajectory of the j-th

joint at time t.

B. Learning torque control signals

In the second step we encode corresponding control torque

signals for the kinematic trajectory qqqd , which was learned in

the first step. To obtain the corresponding torque signals, we

employed a high gain feedback controller, which ensured

required tracking accuracy. The feedback control is given by

τττ = K(qqqd −qqq)+D(q̇qq), (9)

Since kinematic trajectory is time invariant and the corre-

sponding control torque signals must be time dependent, we

introduce a task time multiplier κ that defines the duration of

the task. With this in mind, DMP equations (3), (4), and (7)

used for executing the demonstrated task trajectories while

learning torque control signals, can be rewritten as:

κτdmpv̇ = αz(βz(g− y)− v)+ f (x), (10)

κτdmpẏ = v, (11)

κτdmpẋ = −αxx. (12)

The equations for encoding and learning of the torque

control signals are similar as given in section II-A. The main

difference is that instead of learning the kinematic trajectory

qd , we learn the target function given by

f j(t) = κτdmpτ̈ j(t)+κτdmpαyτ̇ j(t)−αyβy(g− τ j(t)) (13)

where τ j is the commanded torque signal for the j-th joint.

By learning the control torque τττ f f , which is produced by the

high gain feedback controller, the system essentially learns

the corresponding inverse dynamics fdynamic(qqq, q̇qq, q̈qq) along the

executed kinematic trajectory qqqd .

C. Executing the desired motion

In this step, the movement trajectory qqqd and the corre-

sponding torque control signal τττ f f is executed, using a low

gain feedback controller. The controller used for executing

the motion is given by

τττ = K(qqqd −qqq)+D(q̇qq,C)+ τττ f f , (14)

where τττ f f is the feedforward torque control signal, which

was learned in the second step (note that feedforward torques

are only active in the movement execution step). According

to the control system analysis from [20], when feedforward

models are used, a low-gain feedback loop is sufficient to

preserve the stability of the system. On the other hand,

without feedback loop the system would inevitably diverge,

regardless of the precision of the feedforward model.

The main advantages of using feedforward models are

the better tracking performance (compared to a system

without feedforward terms) and the possibility to use low-

gain feedback, which enables natural compliant behavior of

the robot. Note that low-gain feedback has little impact on

the mechanical (natural) compliance of the robot.

III. NEW TASK TRAJECTORIES

In the previous section we described how to acquire a set

of desired trajectories with the corresponding torque control

signals associated with the movement executions at different

speeds. At this point the recorded trajectories can be played

back using feedforward torque control signals. In this section

we investigate how to combine the available trajectories to

generate new trajectories with the corresponding feedforward

torque control signals using hierarchical graph search. The

application of hierarchical graph search for the generation of

new robot movements as such is not new, see e. g. [10]. Here

we study how to add the corresponding feedforward torque

control signals to the newly found trajectories.

A. Building the database

To combine two different types of information in a hier-

archical database, we use a similar approach as Yamane et

al. [11]. Instead of storing and relating the motion of two

subjects in an integrated database as in [11], we store and

relate the kinematic trajectories qqqd and the associated torque

control signals τττ f f . The first part of the database thus rep-

resents the kinematic trajectories qqqd obtained by kinesthetic

guiding. We concatenate them in a sample position matrix:

XXX = [xxx1,xxx2, . . . ,xxxn], (15)

where xxxi denotes the state vectors sampled at a given discrete

time interval and n is the total number of all samples

belonging to all learned kinematic trajectories incorporated

into the database. State vectors are defined as

xxxi = [q1i, q̇1i,q2i, q̇2i, . . . ,qdi, q̇di]
T
, (16)

where j-th joint angle and its velocity at time ti are denoted

by q ji and q̇ ji, respectively, and d is the number of the robot

degrees of freedom.

We use the sample joint matrix as a root node of a binary

tree, which represents learned position trajectories. We use k-

means algorithm (with k = 2) to cluster similar state vectors

and thus split the root node into two child nodes. The data in

each of these nodes is then clustered again to gain the nodes

at the next level of the binary tree, as shown in Fig. 1.

Criterion for when to stop splitting the tree nodes is based

on the variability of data contained in the node. We define

the mean distance dk of node k as

dk =
∑

nk
i=1 d(xxxki,ccck)

nk

, (17)

where nk denotes the number of state vectors clustered at

node k. d(xxxki,ccck) is the Euclidean distance between state

vectors xxxki associated with node k and the node’s centroid ccck,

which was calculated by the k-means algorithm. If dk is lower

than a predefined threshold, then state vectors contained in

the node are similar and we stop splitting this node. With

this we avoid the binary tree getting unnecessarily deep while

ensuring the needed precision of the representation. With this

criterion we cluster the data into nodes until we do not have

any nodes left to split. To ensure that all state vectors are

542

L
ev

el
D

ep
th

X

Sample Position
Matrix

Kinematic Trajectories qqqd Torque Control Signal τττ f f

2nd level with TG

3rd level with TG

4th level with TG

κ1

κ1

κ1

κ2

κ2

κ2

κ3

κ3

κ3

Fig. 1. Both parts of the database. The figure shows its structure, with kinematic trajectories represented on the left side and corresponding torque
trajectories on the right. The sample joint matrix X is divided into two child nodes with k-means clustering. Then, the transition graph (TG), which
represents probabilistic transitions between the nodes at this level, is built. The data associated with each node is clustered into child nodes for the 3rd

level, where the TG is build again. We continue this procedure until all nodes fit the stopping criteria. Note that we expand those nodes to the last level and
thus represent all of the data at all levels. The right side represents corresponding torques at different speed of execution i. e. different task time multipliers
κ . At every level of the database, each node in the binary tree, on the left, has one or more (example figure shows three) corresponding torque means and
time durations, on the right.

represented at all levels of the binary tree, every branch is

extended to the last level.

Transition graph, representing all possible transitions be-

tween the nodes, is built at each level of the tree (see

Fig. 1). The edge weights in the transition graph represent the

probability of transition from one node to another. Transition

probability from node k to node l is estimated by

Pkl =
mkl

nk

(18)

where mkl denotes the number of transitions observed in all

trajectories of the original data, i. e. the number of all state

vectors clustered in node k that have a successor in node l.

For further processing it is not necessary to store all state

vectors xxxk at each node of the binary tree. Instead, only

the mean of the corresponding state vectors xxxk is stored

at each node. If the node contains exactly one start/final

configuration, we store it instead of the mean. In this way

we ensure that movements generated by graph search end in

the same end points as the learned position trajectories. In

this step the time component is lost. We explain in Section

III-B how time duration is estimated.

As we are synthesizing new task trajectories consisting

of kinematic trajectories qqqd and control torques τττ f f , the

database must also encode torque control signals. We do not

separately cluster the torque signals, but rather associate the

torques with the corresponding nodes in the transition graph.

This means that for each part of the kinematic trajectories,

represented in a single node through the mean of state

vectors, we store the corresponding means of torque signals

τττ f f and time durations td . We do this multiple times as we

execute the same movements with different time duration,

i. e. with different task time multipliers κ . See Fig. 1 for

example representation of the whole database.

B. Searching for new task trajectories

We start the search for new trajectories by selecting the

desired start and end points on two different trajectories. In

addition, the desired task time multiplier κ is selected. A

binary tree level also needs to be selected. As the level

determines the fidelity of reproduction compared to the

original trajectories, we normally select the last level of the

binary tree. We then try to find a path between the nodes

corresponding to the desired start and end joint position. To

achieve that we employ A* search algorithm in the transition

graph at the desired level. As long as the two trajectories

share a similar enough part, the most probable path is found

and with it a sequence of nodes i. e. mean state vectors.

Based on the selected time multiplier κ , we add the

corresponding mean torques τττ f f to the state vectors xxxk of the

543

Fig. 2. Learning task trajectories by kinesthetically guiding the Kuka LWR
robot arm.

discovered sequence. We enhance this sequence further with

time durations td corresponding to the added torques. Now

we have a sequence of joint positions, torques and their time

durations. The newly discovered sequence can be written as:

{

(xxx1,τττ f f 1,0),

(

xxx2,τττ f f 2,
td1 + td2

2

)

, . . .

. . . ,

(

xxxnp ,τττ f f np ,
td(np−1)+ tdnp

2

)}

, (19)

where np denotes the number of nodes on the trajectory.

We synthesize a trajectory from each discovered sequence

by encoding it as a DMP. The DMPs describing newly

synthesized kinematic trajectories and the corresponding

torque control signals (also encoded as DMPs) can then be

used to execute new, not directly shown, movements while

remaining compliant, as described in Section II-C.

IV. EVALUATION

We evaluated the proposed approach using a Kuka LWR

robot arm. The demonstrator taught the robot several reach-

ing movements while kinesthetically guiding the arm (see

Fig. 2). Two of the learned movements that intersect each

other are shown in Fig. 4. All kinematic trajectories were

encoded as DMPs. They were used in the second step to

obtain corresponding torque control signals, as described

in Section II-B. Each movement was executed three times

with different task time multipliers κ = {1,2,3}. The learned

movement trajectories qd and the corresponding torque con-

trol signals τττ f f were then used to execute the learned

reaching movements using a low-gain feedback controller

(14). Fig. 3 shows an example sum of all joint’s tracking

errors with respect to time

e(t) =
7

∑
j=1

(qa j(t)−q j(t))
2
, (20)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5
x 10

−3

t [s]

e
(t
)
[r
a
d
2
]

C
low

C
high

C
low

 + τ
ff

Fig. 3. The sum of all joint’s tracking errors as defined in (20). The
green line represents tracking errors while executing the movement with a
high gain feedback controller (Chigh). Red line represents tracing error while
using a low gain feedback controller (Clow). Finally, the blue line represents
the sum of all joint’s tracking errors while using the proposed controller,
low gain feedback controller and feedforward torque signals (Clow + τ f f).
We can observe low tracking errors gained by incorporating feed-forward
torque signals. Note that the gain used for feed-back loop controller Clow

was 20 times lower than Chigh.

0.45

0.5

0.55

0.6

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.56

0.58

0.6

0.62

0.64

0.66

y[m]

x[m]

z
[m

]

Fig. 4. The closest demonstrated and newly synthesized kinematic
trajectories in task space. Blue lines represent demonstrated trajectories,
while red lines represent newly synthesized kienmatic trajectories.

where qa j(t) denotes the actual j-th joint position. We can ob-

serve that by using a low-gain feedback loop without the feed

forward torque signal τττ f f in order to achieve compliance,

tracking error escalates greatly (red line) in comparison to

a high-gain feedback loop (green line). However, by adding

the feedforwad torque control, similar compliance can be

achieved, while successfully tracking the desired trajectory

qqqd (blue line). Note that the low gain was 20 times lower

than during the execution with a high-gain feedback loop.

Both the learned kinematic trajectories and the corre-

sponding torque signals were used to build the database,

as described in Section III-A. This database was used to

find new reaching movements as described in section II-

B. A* search algorithm found new sequences of nodes, as

the demonstrated trajectories had parts that were sufficiently

similar. Each new sequence started in the first node of one

of the demonstrated trajectories and ended in the final node

of one of the others. Each new sequence of mean position xxx

was then enhanced with mean torques τττ f f and corresponding

time duration td three times, once per task time multiplier

κ . Using DMPs we found complete representations of new

544

TABLE I

MEAN TRACKING ERRORS AND STANDARD DEVIATIONS FOR EACH JOINT AND THEIR SUMS WHEN EXECUTING REACHING MOVEMENTS. Task1 AND

Task2 DENOTE TWO EXAMPLES OF THE DEMONSTRATED MOVEMENTS, WHILE Task12 AND Task21 DENOTE TWO EXAMPLES OF NEWLY SYNTHESIZED

REACHING MOVEMENTS. ALL VALUES ARE IN [10−5rad2].

Task1 q1 q2 q3 q4 q5 q6 q7 ∑
(κ = 1)

Chigh 0.306 (0.289) 1.18 (1.69) 0.660 (0.491) 1.89 (1.65) 0.696 (1.23) 0.211 (0.292) 0.693 (1.09) 5.64 (6.74)
Clow 112 (101) 69.9 (77.7) 48.7 (28.3) 41.9 (98.0) 27.5 (44.9) 56.9 (145) 7.29 (11.6) 364 (507)

Clow + τ f f 2.51 (1.96) 21.7 (24.9) 1.54 (1.25) 5.49 (6.67) 3.31 (4.90) 1.79 (2.61) 5.55 (9.32) 41.9 (51.7)

Task2 q1 q2 q3 q4 q5 q6 q7 ∑
(κ = 1)

Chigh 0.325 (0.235) 0.617 (0.938) 0.930 (0.989) 0.200 (0.292) 0.191 (0.197) 0.0836 (0.143) 0.405 (0.552) 2.75 (3.35)
Clow 100 (74.8) 48.5 (75.4) 31.3 (25.7) 38.1 (47.8) 9.41 (14.2) 12.3 (22.0) 4.94 (8.46) 245 (268)

Clow + τ f f 2.77 (2.93) 21.7 (26.5) 2.23 (2.53) 4.12 (7.43) 1.58 (1.90) 2.29 (3.38) 2.40 (3.47) 37.1 (48.2)

Task12 q1 q2 q3 q4 q5 q6 q7 ∑
Clow + τ f f

κ = 1 29.3 (44.4) 18.6 (22.6) 14.0 (24.6) 7.12 (9.87) 9.32 (12.5) 2.98 (3.26) 1.31 (2.25) 82.7 (119)
κ = 2 27.2 (61.5) 8.88 (7.04) 3.40 (9.56) 8.01 (12.2) 15.9 (21.8) 4.28 (4.89) 2.07 (2.21) 69.8 (119)
κ = 3 26.7 (68.4) 17.0 (15.7) 3.76 (7.74) 6.49 (8.97) 17.8 (24.6) 3.02 (3.71) 1.23 (1.66) 76.0 (131)

Task21 q1 q2 q3 q4 q5 q6 q7 ∑
Clow + τ f f

κ = 1 7.29 (6.42) 26.4 (19.9) 3.62 (3.30) 7.24 (9.59) 6.82 (11.5) 4.53 (4.60) 1.11 (2.52) 57.0 (57.8)
κ = 2 3.63 (3.86) 10.2 (8.01) 1.02 (1.80) 8.97 (13.7) 8.62 (11.77) 8.90 (3.60) 1.74 (1.67) 43.1 (44.3)
κ = 3 2.16 (3.07) 21.1 (17.0) 1.74 (1.93) 6.97 (11.5) 8.67 (11.8) 5.86 (4.51) 1.21 (1.48) 47.7 (51.3)

0.43 0.45 0.47 0.49 0.51 0.53
0.52

0.53

0.54

0.55

0.56

y [m]

x
[m

]

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52
0.646

0.651

0.656

0.661

y [m]

z
[m

]

Fig. 5. Sections of the closest demonstrated trajectories and the newly
synthesized trajectories in the task space. These sections represent transitions
of new trajectories, represented with red lines, from one demonstrated
trajectory to the other, represented with dashed blue lines. We can observe
smooth and continuous transitions.

reaching movements trajectories. Two new example position

trajectories in task space can be seen in Fig. 4, marked

with red lines. For clarity, sections of demonstrated and new

kinematic trajectories in two different 2D spaces are shown

in Fig. 5.

All new reaching movements were executed on the robot

as proposed in Section II-C. Fig. 6 shows joint position

tracking errors of three example movements with different

0 2 4 6 8 10 12
0

1

2
x 10

−4

t [s]

e
(t
)
[r
a
d
2
]

κ
1

κ
2

κ
3

Fig. 6. The sum of all joint’s tracking errors (20) of newly synthesized
tasks. Errors of three example tasks are given. They were executed with
different task time multipliers κ . Even though these movements were never
directly shown, the tracking error remains within a tolerable range.

task time multipliers. Tracking errors are again defined as in

Eq. 20. Tracking errors of newly synthesized tasks remain

similar to those of directly demonstrated tasks.

Table I contains means and standard deviations of tracking

errors (qa j(t)− q j(t))
2 for individual joints j. All values

are in 10−5rad2. First two parts of the table (Task1 and

Task2) show errors with respect to the execution of the two

closest reaching movements. They were both executed with

task time multiplier κ = 1. Errors for this part of the table

were measured by performing reaching movements with high

gain feedback controller (Chigh), low gain feedback controller

(Clow), and low gain feedback controller with feedforward

torque signal (Clow +τ f f). Low gain used for all movements

was 20 times lower than high gain. We can observe how

the tracking error drastically increases when we apply low

gain instead of high gain. But there is a significant drop in

545

error when we add feedforward torque signals to low gain

feedback control. The last two parts of the table contain

errors measured when executing two examples of the newly

synthesized reaching movements (Task12 and Task21) while

using low gain feedback control with feedforward torque

signals. Each movement was executed for all three task time

multipliers κ . We can immediately observe the consistency

of tracking error over different multipliers κ . Secondly, there

is no significant increase in tracking error even though these

movements were newly synthesized. We can thus conclude

that newly synthesized reaching movements can be executed

using low gain feedback control with feedforward torque

signals.

V. CONCLUSIONS

We proposed and evaluated an approach to discover new

reaching trajectories in a database of example trajectories

and to learn the corresponding dynamics. By feedforwarding

the associated torque control signals, we can execute the

reaching movements with a high tracking accuracy while

exhibiting compliant behavior without using a full dynamic

model. We showed that new reaching movements can be

generated from a library of kinesthetically guided example

movements, as long as they have sufficiently similar partial

trajectories. In our experiments we used the developed ap-

proach to acquire a library of several reaching movements.

Each of the kinesthetically guided movements was executed

at different velocities using high gain controller and the

associated torque control signals were stored in the database

together with the kinematic trajectory. New movements were

found using graph search. Our evaluation showed that newly

synthesized movements maintain the needed tracking ac-

curacy and compliance even though they were built from

parts belonging to different movements. With a sufficient

number of example movements, we could execute any reach-

ing movement with compliant behavior while maintaining

accuracy, without the need for a full dynamical robot model.

REFERENCES

[1] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Ma-

nipulators, ser. Advanced Textbooks in Control and Signal Processing.
London: Springer, 2000.

[2] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey.” Cognitive Processing, vol. 12, no. 4, pp. 319–40, 2011.

[3] C. G. Atkeson and J. M. Hollerbach, “Kinematic features of unre-
strained vertical arm movements.” The Journal of Neuroscience, vol. 5,
no. 9, pp. 2318–30, 1985.

[4] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control.” Neural Networks, vol. 11, no. 7-8, pp.
1317–29, 1998.

[5] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of
sensorimotor control.” Neuron, vol. 72, no. 3, pp. 425–42, Nov. 2011.

[6] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Dynamical movement
primitives: Learning attractor models for motor behaviors,” Neural

Computation, vol. 25, no. 2, pp. 328–373, 2013.
[7] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-

namical systems with Gaussian Mixture Models,” IEEE Transactions

on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
[8] C. Rose, M. Cohen, and B. Bodenheimer, “Verbs and adverbs:

multidimensional motion interpolation,” IEEE Computer Graphics and

Applications, vol. 18, no. 5, pp. 32–40, 1998.
[9] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans-

actions on Graphics, vol. 21, no. 3, July 2002.
[10] K. Yamane, Y. Yamaguchi, and Y. Nakamura, “Human motion

database with a binary tree and node transition graphs,” Autonomous

Robots, vol. 30, no. 1, pp. 87–98, 2010.
[11] K. Yamane, M. Revfi, and T. Asfour, “Synthesizing object receiving

motions of humanoid robots with human motion database,” in IEEE

International Conference on Robotics and Automation (ICRA), Karl-
sruhe, Germany, 2013, pp. 1621–1628.

[12] M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer
of policies based on trajectory libraries,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), San Diego, CA,
2007, pp. 2981–2986.

[13] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[14] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, pp. 111–127, 2013.

[15] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” International

Journal of Robotics Research, vol. 23, no. 3, pp. 263–279, 2013.
[16] D. Kushida, M. Nakamura, S. Goto, and N. Kyura, “Human direct

teaching of industrial articulated robot arms based on force-free
control,” Artificial Life and Robotics, vol. 5, no. 1, pp. 26–32, 2001.

[17] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: object-lifting case study with
a humanoid,” in 2009 9th IEEE-RAS International Conference on

Humanoid Robots, Paris, France, 2009, pp. 399–404.
[18] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-

ments for humanoid robots by observation,” Robotics and Autonomous

Systems, vol. 47, no. 2-3, pp. 93–108, June 2004.
[19] J. Babic, J. G. Hale, and E. Oztop, “Human sensorimotor learning for

humanoid robot skill synthesis,” Adaptive Behavior, vol. 19, no. 4, pp.
250–263, 2011.

[20] M. W. Spong and M. Vidyasagar, Robot dynamics and control. Wiley,
2008.

546

