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Abstract— Autonomous robots that operate in unstructured
environments must be able to seamlessly expand their knowl-
edge base. To identify and manipulate previously unknown
objects, a robot should continuously acquire new object knowl-
edge even when no prior information about the objects or
the environment is available. In this paper we propose to
improve visual object learning and recognition by exploiting
the advantages of foveated vision. The proposed approach first
creates object hypotheses in peripheral stereo cameras. Next
the robot directs its view towards one of the hypotheses to
acquire images of the hypothetical object by foveal cameras.
This enables a more thorough investigation of a smaller area
of the scene, which is seen in higher resolution. Additional
information that is needed to verify the hypothesis comes
through interactive manipulation. A teacher or the robot itself
induces a change in the scene by manipulating the hypothetical
object. We compare two methods for validating the hypotheses
in the foveal view and experimentally show the advantage of
foveated vision compared to standard active stereo vision that
relies on camera systems with a fixed field of view.

I. INTRODUCTION

To be able to successfully work in unstructured and
uncontrolled environments, autonomous robots must have the
ability to expand their library of known objects. Such robots
must therefore be able to detect and learn new objects when
no prior knowledge about them and the environment is avail-
able. Segmenting objects using only visual information has
proved very difficult [1], [2]. However, perturbing the scene
by for example pushing a hypothetical object introduces
additional information that makes this task more feasible [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12].

In this paper we propose to improve object recognition
in autonomous robots by learning and recognizing objects
using foveated vision. In biological systems, the fovea is a
part of the retina with a very high density of cone cells.
It is responsible for color vision and color sensitivity. The
density of cones slowly decreases toward the peripheral part
of the retina. This layout provides sharp central vision and a
relatively low average resolution over the entire field of view,
therefore reducing the need for computational resources, but
still achieving high precision vision in the fovea. Foveated
stereo vision in robots can be accomplished using two
cameras per eye with different focal lengths [13], [14],
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[15], [16]. This arrangement enables capturing wide-angle
peripheral and narrow-angle foveal images at the same time,
but requires gaze control in order to acquire the area of
interest in the foveal view. A practical advantage of such
an arrangement is that a robot can simultaneously analyze
the wide field of view of peripheral cameras – where it is
easier to find and track objects – and the narrower field of
view of foveal cameras – where objects images have higher
resolution and are therefore more suitable for recognition.

Some of the recently proposed methods rely on accurate
depth sensors to segment objects from the scene [7], [9], [17],
[11], [12], [18]. We chose to rely solely on stereo foveated
vision to learn object representations (Fig. 1) because such
systems are more generally applicable and are also closer to
human vision and depth perception.

In our previous work [10], [19] the robot learns and
recognizes objects using standard active stereo vision. It
generates hypotheses about the existence of objects and
tries pushing them to look for changes in the scene and
validate the object hypotheses. Object representations were
obtained by accumulating the confirmed features over several
snapshots and a bag-of-features type models [20] have been
acquired. Here we propose to extend this object learning
process by making use of foveated vision, thus adding the
confirmed object features acquired in the foveal view. In
our current experiments, the manipulation of objects has
been realized through human interaction. However, the robot

Fig. 1. Karlsruhe Humanoid Head [13] and the object test set used in the
experiments. The head is equipped with two cameras in each eye. One pair
of cameras models human peripheral vision, the other pair foveal vision.
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could also use it’s own manipulation capabilities to achieve
the same result. The developed approach requires no prior
knowledge about the objects or the environment and retains
the assumptions that the objects contain some distinctive
visual features and move as rigid bodies.

II. OVERVIEW

The following procedure is applied to learn new objects
and generate their representations for recognition:
• Generate object hypotheses in peripheral view: Find

smooth surfaces in the point cloud of stereo matched
visual features.

• Turn the head and eyes toward one hypothesis: The
centroid of the hypothesis should lie in the middle of
the foveal images.

• Generate an object hypothesis in foveal view: The
object takes up a large portion of the foveal images,
therefore all visual features represent a hypothesis.

• Generate data for hypothesis verification: The robot
requests a human teacher to move the object and val-
idates which features belong to the object due to the
resulting change in the scene. Additional features are
added if they move concurrently with the object.

• Turn the head and eyes toward the confirmed hy-
pothesis: The centroid of the manipulated object should
lie in the middle of foveal images.

• Validate the hypothesis in foveal view: The robot
validates which features belong to the object due to the
resulting change in the scene.

• Feature accumulation: The last three steps above can
be repeated several times to accumulate object features
from different viewpoints.

Note that in this procedure, the object manipulation step by
a human teacher could be replaced by robot manipulation as
in our other work [10].

III. OBJECT HYPOTHESES

A. Peripheral view

Object hypotheses in the peripheral view are created
within a point cloud generated by the peripheral stereo
vision. Initial point correspondences are found by matching
Harris interest points [21] and maximally stable extremal
regions (MSER) [22] in each eye. The Harris interest points
are found mostly on textured parts of the image. The MSER
detector balances that by finding salient points in areas with
less texture. The correct correspondences and precise 3-D
point positions are obtained by using epipolar geometry and
stereo calibration on an active camera system [23]. At each
3-D interest point a SIFT feature descriptor [24] is calculated,
which has shown robustness to scale, rotation, translation and
illumination changes.

The hypotheses are created by searching for smooth
surface patches within this point cloud. As in our previ-
ous work [10], [19], the robot looks for planar, spherical
and cylindrical surface patches using RANSAC [25]. This
iterative, nondeterministic model fitting algorithm chooses a
random subset of points, fits models of the possible surface

types and returns the parameters of the fitted surface that
includes the largest number of points within a tolerance of
that surface out of the entire point cloud. All of the points
belonging to the fitted surface are then excluded from the
point cloud and a search for a new hypothesis is started
again. When no good fits are found anymore, the remaining
points are clustered into groups of points lying close to each
other using X-means algorithm [26]. Each of these clusters
also represents a hypothesis if it retains enough points and
has a sufficient point per volume ratio. This allows the robot
to create a hypothesis for an object, even if no part of that
object corresponds to a smooth surface.

In order to prevent surface hypotheses spanning over
several objects, X-means clustering is applied to each hy-
pothesis. The hypothesis is divided into several hypotheses
if that is deemed appropriate by the algorithm. Erroneous
splitting of hypotheses is not a problem since all features that
move concurrently after interactive manipulation are later
joined together as a validated object. An example of initial
object hypotheses in the peripheral view is seen in Fig. 2. A
detailed description about the detection of planar, spherical
and cylindrical surface patches is given in [19].

B. Foveal view
Since a foveal image covers a much narrower field of view,

the object of interest will cover a larger portion of the foveal
than peripheral image. We can therefore assume that there
is no need to search for smooth surface patches, like in the
peripheral views, to create hypotheses. Instead, the entire
point cloud is considered as an object hypothesis. The foveal
camera pair naturally requires it’s own camera calibration
to find interest point correspondences and calculate the 3-
D position of points. An example object hypothesis in the
foveal view is seen in Fig. 2.

Fig. 2. Initial hypotheses in a typical scene with household objects. In
the peripheral view, each hypothesis is represented by points of the same
color. After the head has turned towards hypothesis ”0”, we see the initial
hypothesis in the foveal view, where a hypothesis consists of all features.

IV. GAZE CONTROL

In order to acquire the object hypothesis in the foveal view,
the robot must rotate the head and eyes so that the center of
the hypothesis appears in the foveal cameras. Hypothesis i
is first created in the peripheral view. It contains Ni points
corresponding to a smooth surface patch. The 3-D centroid
Pi of the hypothesis in the peripheral view is calculated as
follows

Pi =

∑Ni

n=1 xn

Ni
(1)
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Fig. 3. A typical object learning / recognition procedure. The upper row respectively shows the peripheral and the bottom row the foveal view. The
images in the first column contain the initial object hypotheses as the head is turned towards hypothesis ”0”. Each of the following columns shows the
scene after moving the object, validating the initial hypothesis and accumulating the verified feature points for learning or recognition.

Using direct kinematics equations, the robot calculates the
positions of all the hypotheses in the global coordinate
system. It then uses a virtual mechanism approach to cal-
culate the proper joint configuration to center the chosen
hypothesis in the foveal cameras and moves the head and
eyes accordingly [27].

V. OBJECT VALIDATION

After the robot has identified the object hypotheses and
turned its view towards one of them, it needs additional infor-
mation to validate or discard the hypothesis. This additional
information is provided by inducing motion on the object.
Changes in the scene can then be analyzed for simultaneous
feature motion, which is a very strong indicator of object
existence in the object definition given by Gibson [28].
In our system, the robot requests a human to move the
object hypothesis the robot is looking at. This is indicated
by displaying the hypothetical object feature points in the
acquired stereo image pair. Alternatively, the robot could
also use it’s own manipulation capabilities to try and push
the object hypothesis or perform some other manipulation.
A typical learning or recognition procedure is seen in Fig. 3,
where the initial hypotheses in the first column are validated
after changes in the scene in each of the following columns.

After the manipulation action is completed, the robot
recomputes the point cloud using Harris interest points and
MSERs as described in Section III.

A. Peripheral view

Our basic assumption is that the object moves as a rigid
body. The feature points contained in the hypothesis are
matched in the peripheral images after the change using a
SIFT descriptor. Due to occlusions or large rotations, some
of the features may not be matched at all. If enough matches
are found, we can test our assumption and find a rigid
body motion that corresponds to the motion induced by
manipulation. Since there will be false feature matches and

matches of points that didn’t belong to the object in the first
place, we use the RANSAC algorithm for finding the most
probable object rotation and translation, thereby filtering out
all feature correspondence matches not within the tolerance
of the transformation. The parameters of the transformation
can be estimated from three pairs of points before and after
the change. Let xn be the position of a feature point before
the change and x′n the position of the matched point after. If
the new feature position corresponds to the transformation

x′n = R · xn + t, (2)

where R is the rotation matrix and t is the translation
vector, it moved concurrently with this transformation. If
more than a minimum amount of features correspond to
this transformation, the hypothesis is considered as validated.
All of the features that move according to the estimated
rigid body transformation are considered confirmed object
features. In the following we call this process a rigid body
motion filter (RBMF).

All other feature matches from the point cloud, i. e.
features from the point cloud that do not belong to the initial
hypothesis, are also checked regarding the estimated rigid
body transformation. If they move as the object features,
these features are added as candidate features of the validated
hypothesis. If they are matched and move together with the
object also after the next manipulation, they are considered
confirmed. The first row in Fig. 3 shows an example of
successful object validation through several manipulations.

Even though in this paper we propose learning based on
foveal views, it is still necessary to track the motion of the
hypotheses in peripheral view as well. This is due to the fact
that after manipulation the object usually disappears from
the foveal view. The only way to get it back into the foveal
view is to perform a saccade towards the new object position,
which can be done by estimating the new object pose in the
peripheral view.
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B. Foveal view

The same process of hypothesis validation described for
the peripheral views can be used in the foveal view as
well. After the successful validation of the hypothesis in the
peripheral view, the head and eyes are turned toward the
hypothesis’ centroid. The new point cloud is computed in
the foveal view and matched to the one before the change
using SIFT descriptors. Matches are verified with the rigid
body motion filter described in Section V-A and the object
hypothesis is validated or discarded. The second row in Fig. 3
shows an example of successful object validation through
several manipulations.

We also suggest a simpler solution for use in the foveal
views to reduce the computational complexity of the vali-
dation procedure. Since RANSAC is a statistical method, it
needs many repetitions in order to provide a good solution
with high certainty [25]. Being a nondeterministic algorithm,
it does not guarantee the best solution even after an arbitrary
number of repetitions. Instead, we propose to make use of
the known movement of the head and eyes and assume that
the surroundings of the hypothesis does not move when the
human moves the object. We can therefore filter all static
features in the peripheral views, i. e. features that moved
according to the motion of the head-eye system, and confirm
all other features as features belonging to the object. The
assumption of static surrounding is much more justified in
foveal than peripheral views because foveal views contain
only a small portion of the scene.

Let xn be the position of a feature point before the
change and x′n the position of the matched feature point after
manipulation and head-eye rotation. Let RV be the rotation
matrix and tV the translation vector describing the change
of viewpoint from the previous gaze direction. We define
threshold ε as a minimum displacement that implies motion.
If statement (3) is true, the feature point has moved and
belongs to the validated hypothesis:

‖x′n −RV · xn + tV‖ ≥ ε. (3)

We call this method a static feature filter (SFF). Although
SFF requires a partially static scene, it provides a valid
alternative to the first approach. In Fig. 4 we can see how
successful these two methods are at filtering feature matches
and validating the hypotheses. In these examples, the initial
object hypotheses in foveal views (recall that our assumption
is that all feature points detected in foveal views belong
to the object) contained a large number of features found
in the background. The first row shows validation of the
initial hypothesis with rigid body motion filter (RBMF)
and the second row validation with the static feature filter
(SFF). Both approaches succeeded in eliminating most of
the spurious features, although SFF failed to discard a small
number of false matches on the box in the background.

VI. OBJECT LEARNING AND RECOGNITION

As in our previous work, the visual appearance of objects
is learned using a bag of features (BoF) model [20]. Firstly,
a visual vocabulary is created by clustering SIFT feature

Fig. 4. In the first row, the initial hypothesis in the foveal view is validated
with the rigid body motion filter and in the second row with the static feature
filter. The rigid body motion filter discards all the background features and
all false matches. The static feature filter requires a static background and
cannot filter false SIFT matches.

descriptors extracted from training images. To compute the
vocabulary, we use the SIFT feature descriptors extracted
while learning different objects from different viewpoints. To
represent an object, each SIFT descriptor that is confirmed
to belong to the object in the current view, is matched
with the closest descriptor in the vocabulary. A histogram
of descriptors from the vocabulary corresponding to object
features is built and later used for recognition.

To include color information, the robot also calculates a
saturation-weighted hue histogram [29] within the ellipse
spanned by the principal axes of the confirmed features. Both
the BoF and hue histograms are calculated for individual
viewpoints and for the accumulated representation after
each successful validation in foveal and peripheral views.
Combined, the histograms represent global color information
and descriptors of salient area in all relevant views.

Object recognition is realized by calculating the cor-
responding histograms of the initial or validated object
hypothesis as described in the previous paragraphs. A k-
nearest neighbors decision is based on the distance measure
between known objects in the database and the hypothesis.
The distance measure is a weighted sum of normalized
χ2 histogram distances of the BoF and hue histograms as
described in [10].

Some examples of object recognition for the initial hy-
pothesis in the foveal view are shown in Fig. 5. Objects
rich with features can be quite successfully recognized in
this stage already, even though there are a lot of features
belonging to the background included in the hypothesis
(upper left image). Smaller objects with fewer features are
sometimes classified as incorrect objects (unknown object in
the background, upper right image) or as the object in the
background itself (lower left image). When initial hypotheses
do not include many features from the background, they
are recognized rather successfully as shown later in the
experimental evaluation (lower right image).
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Fig. 5. Recognition of initial hypotheses in the foveal view depends greatly
on the amount of features in the background. In the upper left image we
have an unknown object in the background, but the object in the foreground
is correctly recognized, since it is very rich with features. In the upper right
image the object in the foreground has much fewer features and is therefore
incorrectly recognized. For the same reason, the object in the lower left
image is falsely recognized as the known object in the background. If there
are few features in the background, as seen in the lower right image, the
recognition of objects in the initial hypotheses can reach 93%.

VII. EXPERIMENTAL EVALUATION

We preformed several experiments to evaluate the gain of
using foveated vision for object learning and recognition.
We also compared the proposed filters (RBMF and SFF) for
validating hypotheses in the foveal images.

The robot first learned representations of 20 different
typical household objects (Fig. 1), where a human teacher
manipulated the objects. The objects were placed on a table
in sets of 5 at a distance approximately 1 meter from the
robot, as shown in Fig. 2. Using KUKA LWR manipulators,
this distance would be well within reach of the robot if push-
ing was done autonomously. There were some occlusions
present at times, but eventually each object was shown in
full extent. The system created initial hypotheses about the
objects and then learned a model for each. Each model was
learned through 6 consecutive manipulations. The human
teacher (the first author) moved the objects mainly laterally
to the image plane with small rotations. This ensured good
feature matching, but the objects were learned mainly from
one viewpoint. For the foveal view different representations
were learned, once using RBMF and once SFF.

For recognition, the sets of objects were randomly mixed
and placed back on the table. The robot tried recognizing the
initial hypotheses and then requested the human to move the
object it was facing. It followed the object through 3 consec-
utive manipulations in the scene and tried recognizing it after
each one. Table I shows the results of object recognition.

The results of recognition in peripheral views are signif-
icantly worse than in our previous work [10], where we
used the same camera pair as a standard active stereo vision
system. This is due to the increased distance of the objects
from the robot. In our experiments the objects were placed

TABLE I
OBJECT RECOGNITION RATE IN THE PERIPHERAL VIEW, FOVEAL VIEW

WITH RIGID BODY MOTION FILTER (RBMF) AND FOVEAL VIEW WITH

STATIC FEATURE FILTER (SFF) FOR THE INITIAL HYPOTHESES AND THE

FOLLOWING PUSHES.

init. hyp. 1 push 2 pushes 3 pushes
Peripheral 51 % 52 % 60 % 62 %
Foveal w. RBMF 60 % 95 % 95 % 95 %
Foveal w. SFF 60 % 100 % 100 % 100 %

approximately 50 cm further away form the cameras. The
recognition rate improves with each push, until it starts to
converge toward approximately 65 % and doesn’t improve
even after more pushes. At such a distance few object
features were found and even fewer matched. On average,
only 32 features were accumulated in the recognition stage,
describing each object after 3 pushes. A larger number of
features allows for more robust recognition under partial
occlusion in cluttered scenes [24].

Recognition rate using foveated vision varied a lot in the
initial hypothesis. Depending on the amount of clutter in
the view, features of the hypothesis might belong to the
background. Singulated objects were correctly recognized 93
% of the time, while dense clutter reduced this rate down to
27 %. On average, the initial hypothesis recognition rate in
our experiments was 60 %. Using the proposed approach,
background features were filtered our after the first push and
the recognition rate improved significantly.

Both of the proposed filters used the same initial hy-
potheses. Using RBMF, the validated hypothesis after the
first push was successfully recognized 95 % of the time.
This rate stayed stable with consequent pushes. It turned
out that there was just one particular object, which was
constantly recognized as another object from the database.
These recognition rates are significantly higher compared to
the rates in the peripheral view. On average, 181 features
described each object after 3 pushes, which is significantly
more than in the peripheral view.

Using SFF, the validated hypothesis after the first push was
successfully recognized 100% of the time. This rate remained
stable throughout the interactive recognition process. SFF is
not able to discard false descriptor matches and therefore
builds a richer representation than RBMF including false
positives. On average, 227 points described each object after
3 pushes, but as it turns out, a richer representation including
some false descriptor matches does not hurt the recognition
rates, since the proportion of false features is low. Some
of them were actually on the object itself and therefore
benefited the representation. The results prove that both
methods are valid options for hypothesis validation in foveal
views. Overall, our results confirm the usefulness of foveal
vision for object learning and recognition.

VIII. CONCLUSIONS

We developed a novel system for object learning and
recognition by manipulation, which can exploit the advan-
tages of foveal vision. Initial object hypotheses are generated
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Fig. 6. Our method does not require a static tabletop scene. The system
is able to learn new objects or recognize known objects in an arbitrary
environment. In the pictures above, we can see the object learning through
human interaction.

in the peripheral view and more accurately investigated in
the foveal view by turning the head and eyes toward the
hypothesis. Hypotheses are validated, corrected and extended
after interactive manipulation by a teacher or the robot itself.
We compared different methods for validating the hypotheses
in the foveal view and showed the advantages of foveal vision
compared to to the standard active stereo vision with a fixed
field of view for object learning and recognition.

A representation of accumulated features that is built
through manipulation shows a particular advantage when an
object is learned from several viewpoints. As it is evident
in Fig. 6, our methods works in an arbitrary environment
in cooperation with a human teacher and relies on only two
assumptions: that the object moves as a rigid body and that
is has distinctive visual features.
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