2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)

Toronto, Canada. October 15-17, 2019

Autonomous Learning of Assembly Tasks from the Corresponding
Disassembly Tasks

Mihael Simoni¢, Leon Zlajpah, Ale§ Ude, and Bojan Nemec

Abstract— An assembly task is in many cases just a reverse
execution of the corresponding disassembly task. During the
assembly, the object being assembled passes consecutively from
state to state until completed, and the set of possible movements
becomes more and more constrained. Based on the observation
that autonomous learning of physically constrained tasks can
be advantageous, we use information obtained during learning
of disassembly in assembly. For autonomous learning of a
disassembly policy we propose to use hierarchical reinforce-
ment learning, where learning is decomposed into a high-
level decision-making and underlying lower-level intelligent
compliant controller, which exploits the natural motion in
a constrained environment. During the reverse execution of
disassembly policy, the motion is further optimized by means
of an iterative learning controller. The proposed approach was
verified on two challenging tasks - a maze learning problem and
autonomous learning of inserting a car bulb into the casing.

I. INTRODUCTION

Assembly is one of the most common, yet demanding
applications in contemporary robotics. Assembly skills are
needed not only in production plants but will also be impor-
tant for the future generation of home and service robots,
including humanoid robots. Applications for home robots
are characterized by a wide variety of different assembly
tasks. Hence, it is very important to shorten the programming
time and to increase the autonomy of learning as in home
environments we cannot relay on skilled operators. Ideally, a
robot would be able to program itself autonomously. Various
learning techniques, such as Reinforcement learning (RL)
and Iterative Learning Control (ILC) [1] were successfully
applied for policy improvement, where the initial task was
previously demonstrated by a human [2], [3], [4]. There were
very few successful attempts of completely autonomous
learning of assembly tasks in robotics [5], [6]. Applied RL
algorithms are required to efficiently scale to high dimen-
sional learning problems encountered in robotics assembly
[7]. Techniques like deep learning, learning in latent spaces,
learning of meta parameters, which more efficiently describe
the learning problem, or covariance matrix adaptation and
statistical generalization techniques can dramatically reduce
the search space in RL. However, they all require at least
a partial knowledge of a model of the process, which can
be either given apriori in an explicit form or inherited from
previous experiments.

All authors are with Department of Automatics, Biocybernetics and
Robotics, JoZef Stefan Institute, Ljubljana, Slovenia
mihael.simonic@ijs.si, leon.zlajpah@ijs.si,
ales.ude@ijs.si, bojan.nemec@ijs.si

978-1-5386-7630-1/19/$31.00 ©2019 IEEE

In the robotics community, tasks that involve interaction
with the environment are considered as extremely hard
to learn due to the unknown and possibly changing en-
vironment. On the other hand, interacting with the envi-
ronment can be advantageous to accelerate the learning
process. Namely, learning of physically constrained tasks
is easier than the learning of tasks, where a robot can
move completely freely in space. The reason is that the
environment constrains the admissible movement directions.
Consequently, the number of parameters that need to be
learned can be greatly reduced. To implement this type of
learning, we need to make use of the natural robot motion
along the constraints imposed by the environment. A suitable
framework for implementing such strategy is provided by
the compliant robot control. This concept was used in our
previous work, where we studied the autonomous learning
for opening of doors and drawers [8].

In this paper, we extend this methodology to autonomous
learning of assembly operations. For this purpose, we pro-
pose to first learn the reverse action — disassembly of an
object. In an assembled object, the set of possible mo-
tions is constrained and typically only a single motion or
operation is possible. During the disassembly, the object
passes consecutively from state to state and the set of
possible motion becomes less and less constrained until
completely disassembled, where individual parts are no more
constrained by the environment. In an assembly task the sit-
uation is opposite; the movement of individual parts changes
from completely unconstrained to constrained. Given no
previous knowledge about the nature of the task, learning of
disassembly is therefore easier than learning of the assembly
task, because of the advantages of physically constrained
tasks for learning.

This idea is in accordance with cognitive and develop-
mental studies, which show that human infants learn object
manipulation in the same sequence: they will learn to insert
a block into a container after a preceding period of merely
taking the block out of the container [9]. Analysis of how
parts interact/couple is crucial to enable the generation of
assemblies in design for assembly. Transfer of knowledge
obtained from disassembly was previously studied in the
context of engineering education [10], but to our best knowl-
edge has previously not been directly used to autonomously
generate assembly procedures.

For learning of the disassembly policy, we propose a novel
algorithm for hierarchical RL, where learning is decomposed

into a high-level decision-making and underlying lower-
level intelligent compliant controller, which exploits the
natural motion in a constrained environment. On the example
of maze learning, we show that the proposed hierarchical
RL is more efficient than classical RL in a constrained
environment.

In assembly, the learned disassembly policy is reversed
and further optimized by means of ILC using a method based
on force profiles [4]. The proposed approach is suitable
for the cases, where the assembly task is reversible. Most
assembly tasks are directly or indirectly reversible [11],
except for tasks including operations involving structural
deformations (e.g. riveting) or activation of external equip-
ment (e.g. for glueing). For the purposes of autonomous
learning of disassembly policy, unreversible operations can
be omitted and manually added to the assembly policy.
On the other hand, operations such as putting/placing, or
screwing are reversible [11]. Tasks including only reversible
operations include generic peg-in-hole task, or more applied
tasks such as electric motor assembly [12] and bayonet
bulb insertion [13]. We verified the proposed approach on
autonomous learning of inserting a model of a car bulb into
the casing.

A general scheme for disassembly learning is presented in
Section II. It is based on a lower level intelligent controller,
introduced in Section III. Assembly policy is derived from
the learned disassembly policy and needs refinement for re-
liable execution. The corresponding algorithms are given in
Section IV. Section V shows the results of the experimental
evaluation of the proposed framework. We conclude with a
critical evaluation and possible extensions of the proposed
algorithms.

II. DISASSEMBLY LEARNING

In this section we present the basics of our approach to
autonomous disassembly policy learning. We assume that
an object is composed of two parts. If the assembled object
consists of more parts, it is necessary to apply disassembly
learning on remaining parts again and again, until the object
is fully disassembled. Furthermore, we assume that the part
to be manipulated is grasped, whereas the other part is fixed.

For learning of the disassembly policy, we propose to
apply hierarchical RL [14], rather than applying classical Q-
learning or SARSA [15] to every possible discretized state
and discrete action for this problem. In this way we can
greatly reduce the number of states and obtain continuous
policies.

The proposed hierarchical RL algorithm is based on
the observation that disassembly processes usually consists
of multiple stages — units of environmentally constrained
motion. If we think in terms of these units, the learning of
disassembly can be represented with a directed graph such as
the one in Fig. 1, where nodes represent various key stages
of the disassembly process and edges represent constrained

231

motions. The goal of disassembly is to find a direct path
from start to the target node.

START TARGET

O

Fig. 1. Disassembly process illustrated as a directed graph. Edges
represent motions between several key stages of the disassembly represented
with nodes. We distinguish between different types of nodes. Start node
(colored yellow) denotes the beginning of disassembly. Decision nodes
(colored orange) correspond to the stages of disassembly where there are
multiple ways how the disassembly should be continued. Pendant nodes
(colored white) represent stages of disassembly where the motion cannot be
continued without returning back. Target node represents fully disassembled
stage.

Within the RL framework, the nodes correspond to the
states, whereas edges represent actions (c.f. Table I). The
states for reinforcement learning are specified with poses of
the robot’s end-effector in the local coordinate system of the
object to be disassembled. A state s is a tuple:

(D

where s is a state, p € R? the position vector, and q € R*
the unit quaternion representation of orientation. Likewise,
actions are given as Cartesian space dynamic movement
primitives (DMPs) [16] encoding explored trajectories from
one state to another together with captured forces and
torques, which are encoded as radial basis functions (RBFs).
(c.f. Sec. III).

Our hierarchical RL algorithm is decomposed into two
levels. The lower level intelligent compliant controller moves
in the admissible directions defined by physical constraints
of the environment and simultaneously identifies key states
for the upper level. The upper level then merely learns the
policy, which action should be taken in each state, but not
the trajectory itself.

s=(p,q),

TABLE I
DUALITY BETWEEN THE GRAPH REPRESENTATION AND HRL

Graph Upper level RL Lower level controller

Start node Start state (disassembly Searching for admissible
begins) directions

Edge Action (specified by Moving along natural
DMP+RBF) constraints

Decision node
Pendant node

Target node

Decision state (multiple
actions can be taken)
Penalty state (movement
cannot be continued)
Target state (where dis-
assembly is finished)

Searching for admissible
directions

Robot turns back

Robot stops

We exploit the duality between the graph representation
and hierarchical RL to first graphically describe the learning

process and gradually formalize it within reinforcement
learning framework. When we talk about graph, we operate
with nodes and edges, whereas when we talk about rein-
forcement learning, we talk about states and actions.

Initially, we don’t know the graph representation of the
disassembly. The initial graph has only one node that
corresponds to the robot pose at the beginning of the
disassembly. Using the intelligent compliant controller the
robot autonomously follows the environmental constraints in
the only admissible direction, until it the movement is fully
constrained. Trajectory of this movement is encoded as an
action and represented in the graph as an edge. When the
motion is not fully constrained anymore, there are multiple
options to continue disassembly. This means that the robot
either found a new state or it came to an existing one.
In the graph, this is represented as a decision node with
multiple edges connected to it. If the movement cannot be
continued in the same direction (represented with pendant
node), the robot turns back. The disassembly is complete
when the motion is unconstrained in all desired d.o.f. The
disassembled state is represented as the target node in the
graph.

During learning, a positive reward is given when the robot
has disassembled the object. Negative reward is assigned
when the robot arrived in a state where the motion could not
be continued. When the robot explores state sg, the action-
value function Q(sg, ay) is updated according to the SARSA
algorithm

Q(sk, ax) + Q(sk, ap)+a(ri+yQ(sk+1, ar+1)-Q(sk, ax)), (2)

where s, is the label of the k-th state, aj is the label of
the action taken in s, 7 is the reward obtained in state s;,
0 < a < 1is the learning gain and 0 < v < 1 is the discount
factor, which gives recent rewards higher importance. The
optimal policy can be obtained by applying e-greedy strategy
in the form

m(s) = {

where parameter € is the ratio between the exploration and
exploitation [15].

Note that in general there is a different set of actions for
each state. The set of possible actions in state sj is given
by an action list Aj. Actions become fully known only after
the robot explores the entire trajectory and arrives in another
state. This can be viewed as adding an edge in the graph.
The entire proposed learning procedure is summarized in
Algorithm 1.

argmax Q(s,a), with probability 1 — ¢,
@ 3)

random action, with probability e,

III. CONTROLLER BASED POLICY SEARCH

In the previous section, a hierarchical RL was proposed
for learning disassembly, where the task of the lower hier-
archical level was the movement along the boundaries and
search for possible states. In this section, we propose to
use an intelligent controller for this purpose, which utilizes

232

Algorithm 1: Hierarchical learning algorithm

Input: Initial robot pose
Output: Learned policy 7(s)

initialize 1 with start state s; from initial pose and
the list of admissible actions A4;
repeat
while not in target state do
greedy selection of action ax € Aj in state sy,
if ar is not explored then
while not in state do
follow the natural constraints, and

L search for state (Sec. III)
encode travelled trajectory as DMP+RBF
mark aj, as explored

1

2
3
4
5
6

<2

else

10 | execute ay

if in a new state then

enumerate new state as Sk1

use detected admissible directions to
create action list Agy1

11
12
13

14 if state = target state then

15 | award positive reward ry

16 else if state = penalty state then
17 award negative reward 7y

18 turn back

19 else

20 | no reward

21

| update action-value matrix Q using Eq. (2)

2 compute policy 7(s) using Eq. (3)

23 until last episode

a compliant control framework. The main advantage of
utilizing the controller is that it can generate continuous
policy.

@

Fig. 2. Searching path and possible states in restricted environment. (a)
shows Frenet-Serret frame attached to the robot in time sample & — 1. (b)
shows search forces applied in the normal and binormal direction. (c) shows
an instance, when the controller discovers a new state.

In general, we do not know in advance where are the
natural constraints of the system. To find a feasible motion
direction, we apply a random force in a random direction. If
this force results in a movement, we use compliant control
to continue the motion in the direction initiated by the
random force. The controller acts in tool coordinates and the
control parameters make the robot compliant in all directions
orthogonal to the direction of the motion. These directions
can be estimated by applying Frenet-Serret frames [17] to the
resulting motion trajectory. Whenever the initiated robot mo-

tion stops, we assume that this is due to the task constraints
and we try to find a new feasible motion by applying again a
random force in a random direction. Following this strategy,
the robot eventually learns how to perform the task in a form
of a parametrized policy. Whenever multiple possibilities
how to continue are identified, the controller stops and waits
for the decision of RL, in which direction it should move.

Let us first define a rotation matrix R,, where the co-
ordinate frame with x coordinate specified in the desired
direction of motion, i.e., p, and the other two coordinates
orthogonal to it, as illustrated in Fig. 2 a. This matrix can
be obtained by forming the Frenet-Serret frame at each
sampling time. The Frenet-Serret frame consists of three
orthogonal directions defined by the path’s tangent (direction
of motion), normal, and binormal. We obtain the following
4 by | with

expression for R, = n,

_ D _ _PXp

Ipl” ™ Il = pll
where p € R? are the measured robot end-effector positions.
The original equation requires accelerations, which are very
low and therefore very noisy during operations like assembly
and disassembly. On the other hand, for our purpose, it is
not important how the normal and bi-normal axis is chosen,
since the robot is equally compliant in both directions.
Therefore, we choose the bi-normal vector b as the arbitrary
vector that satisfies the equation ¢, - b, = 0. Using this
simplification, the only parameter needed is the velocity
p. For robust estimation of velocity vector p we applied
spatial filtering, as proposed in [18], which smooths the
noisy estimates using a first order filter and assures, that
the filtering does not affect the normalization. A discrete
time implementation of the spatial filter is

p(k) = p(k-1) + A1 = p(k-1)p" (k-1))(p(k) — p(k-1)), (5)

where) is the filter bandwidth and & denotes the k-th time
sample. The above equations are used to set the rotation
frame attached to the positional trajectory. The correspond-
ing frame R, is needed also for the orientation part of the
trajectory. For the specification of the robot orientation, unit
quaternions are used. We denote them as g = {n, e} € R?,
where 7 and € are the corresponding scalar and vector part
of the quaternion, respectively. Angular velocities can be
calculated from two subsequent quaternions as

w(k) = 2log(q(k) * q(k — 1)), (6)

where * denotes the quaternion multiplication and the quater-
nion logarithm is calculated as

ty, ny = by X tp, 4

€

arccos(n) el n#0

log(q) = log(n, €) = @)

[0,0, O}T, otherwise.

Similar as for the positional part of the trajectory, the
smoothed angular velocity w, can be calculated as

ws(k) = ws(k — 1)+ dTA(1 — ws(k — Dw! (k —1))w(k), (8)

233

and the corresponding R, = | t, n, b,] with
Ws w X w

t, = = x
o flwsll” T flw xwf

N, = bo X to, ©)
where dT in (8) denotes the sampling frequency.

Next, we will define control law, which enables the
robot to follow the operational space path, defined with the
environmental boundaries. For this purpose, we utilized a
variant of passivity-based impedance control for manipula-
tors with flexible joints [19] and provided a modification,
which enables to set the compliance along the operational
space trajectory. The torque, which is passed to the robot
motors, is calculated as

pe =BBg'u+ (I-BBg')p

(10)
(1)

where p. € RY is the control torque input for the motors,
N is the number of robot joints, @ € R¥ is the joint position
measured at the motor side, J € RV*6 is the manipulator
Jacobian, B and Bg € R*6 denote the positive definite
diagonal matrix of joint and desired joint inertia, respec-
tively. p are measured joint torques and g(6) is the gravity
vector estimated in such a way, that it provides exact gravity
compensation in the static case using the signals measured
at the motor side [20]. N(8) = (I — J(8)J*(0)) € RV*N
is the null space projection operator, J*(8) denotes Moore-
Penrose pseudo-inverse of the Jacobian and the 6o € RV is
the corresponding null-space velocity vector. f. is an addi-
tional force-torque vector in task coordinates. Basically, the
motor torque controller (10) reduces the motor inertia and
compensates for the robot non-linear dynamics, while (11)
provides for the desired impedance and damping, additional
task force and null space motion. The task command input

X, = [pT, wT]T is chosen as
P = -R,D,R;p+RK,Rye, (12)
w. = -R,D,RIw+R,K,R'e, (13)

where position and orientation tracking errors are defined as
€,=pq—p and €,=210g(q,*qa). K, and K, € R3*3 are the
diagonal matrices, which define the positional and rotational
stiffness along and around z, y, z axes, respectively. D,, and
D, € R3*3 are diagonal damping matrices, which are set
to D = 2% /K for critically damped system.

With this control applied, the robot is able to au-
tonomously move along the environmental boundaries, given
that we apply high positional gain in the direction of
movement, which is actually x axis and low gains in the
orthogonal direction, which are y and z axes defined in
the global coordinate system. We denote this trajectory as
operational space trajectory. However, this control law alone
can not discover new states. For this purpose, we applied
short step force signals in the positive and negative directions
of the normal and bi-normal, f., = R, f5[0 1 0]7 for the

force in normal and f., = R,,fo[0 0 1] for the force in bi-
normal direction. f, is suitably chosen scalar, which changes
sign in each test position along the operational trajectory (see
Fig. 2 b). Test positions are positions, where the algorithm
tests for possible states and are equally spaced along the
operational space trajectory. If the application of this test
signals results in motion, i.e. if |Ap - n| or |Ap - b| is
above the predefined threshold, and if the motion along the
tangential direction is also possible, the controller has found
a new state. Ap is the position displacement after applying
each test signal. In the new state, action list is generated
from admissible further movement directions, which can be
calculated from Ap. Note that the admissible movement
directions do not have to be exactly aligned with the normal
or bi-normal, as the robot is compliant (see Fig. 2 c). In
order to improve the robustness of this search procedure,
we can further lower the K gain in the direction of the z
axis. The described search procedure as illustrated in Fig.2
applies to searching positional actions. As there are also
actions, that correspond to different robot orientations, a
similar search procedure has to be performed also for the
rotations. Depending on the number of admissible actions,
the state is categorized. If there are multiple actions, state is
labeled as a decision, if there is just one as a penalty and if
the motion is unrestricted as the target state.

The resulting operational space trajectory is encoded with
Cartesian DMPs [21], [16] together with tangential vec-
tors £,,,t,, captured forces and torques during disassembly,
which are encoded as RBFs, sharing common phase [21]
with DMPs. The benefit of such encoding is twofold: It
allows compact, smooth and scalable representation of a
learned policy, and, it removes the explicit time dependency
of signals, which enables to slow down or speed up the
learned assembly policy according to the specific situation
as it arises [22]. These trajectories are passed to the upper-
level hierarchical RL together with newly discovered sates.
Admissible motion continuations are then used to label new
actions in a new state. At the same time, DMP and RBF
containing the information of traveled trajectory are used to
replace the corresponding action in the previous state. Doing
S0, state search is performed only once for each state.

IV. ASSEMBLY LEARNING

Once we successfully learn the disassembly policy, we
merely reverse it to perform assembly. However, assembling
is a demanding operation even for humans and there is no
guarantee, that it will be successful even if the operation
is reversible, as very small deviations in part geometry,
grasping, material, etc. can result in failure. For this, we
have to apply appropriate control together with the excep-
tion strategies, which mimic human behavior during the
assembly. All these measures are successful when the source
of error is stochastic. Errors of deterministic origin can be
eliminated by policy improvement using ILC.

234

Disassembly policy is encoded with DMPs. DMPs are
dynamical system and as such become unstable when they
are executed with reverse time. Therefore, it is necessary
to learn the time reverse policy with another DMP [23].
This is, however, not necessary for tangential vectors %,
and t, and forces and torques, encoded with RBFs. They
are used for on-line calculation of the rotation matrices R,,
and R, needed for the compliant control. For assembly, we
use identical compliance settings as for disassembly with
one exception; when the manipulated part is not constrained
by the environment anymore, which happens at the end of
the disassembly graph, we set high stiffness in all spatial
directions. This assures precise path tracking during e.g. an
approach motion in assembly. Additional force vector f,
is set to zero during the assembly. During the assembly,
we also observe the measured contact forces and torques
and compare them with measured forces and torques during
disassembly. Note that the forces and torques during assem-
bly have the opposite sign in relation to those measured
at disassembly. When a high deviation occurs, we slow
down the DMP integration, as described in [22], [4]. If,
however, the forces/torques are still increasing, we carry
out a trajectory in the opposite direction for some time and
then try again, as suggested in [11]. Moving in the reverse
direction, we have to switch between the two DMPs as
described in [23].

Finally, we apply ILC in order to improve the policy
obtained with the disassembly learning and to tune it to
eventual change in part geometry and materials, whose
origin is deterministic. The aim of this adaptation is to
bring forces/torques during assembly close to those detected
during disassembly by commanding the desired positions
and orientations [24].

V. EXPERIMENTAL EVALUATION

We first verified the proposed architecture on the example
of maze learning in simulation. Maze learning was selected
as it has many similarities with the disassembly process. In
both cases, the robot has to find an optimal policy from the
start state, which corresponds to starting position in the maze
and the fully assembled object, to the target state, which
corresponds to exiting the maze and to the disassembled
object. As in disassembly, the robot only has to decide how
to continue when multiple actions are possible. We created
a 6 x 9 maze with corridors that restrict the robot movement,
as shown in the upper part of Fig. 3. In this case state for
learning is fully defined by robot position in the maze and
actions are defined by sequences of movement directions.
We applied both classical SARSA learning and the proposed
hierarchical RL algorithm for exiting the maze. The lower
part of Fig. 3 shows learning statistics of 100 runs of each
setup.

This simple example clearly shows the benefit of the
proposed hierarchical learning, since the optimal policy is
learned in very few roll-outs. Furthermore, by connecting

| ?H
F o —
s [1@ Jul
=
Z 1E®
’ J]
e+ o
TARGET @® TArCET
1000 [T 1000
& 500 & 500
N
\ A
\ \
0| VI N 0 A
20 10 0 20 40
Episodes Episodes

Fig. 3. The upper part shows two identical mazes with corridors (white
cells). On the left side a classical RL based on SARSA is applied and on the
right the proposed hierarchical RL algorithm. In both cases the simulated
robot should learn a policy to arrive from the start (yellow) to the target state
(green). For SARSA, all cells are taken as states, whereas for hierarchical
RL states are assigned only in key cells. Start state can be anywhere in the
maze, decision states (light blue) are in the cross-ways. Reward is given
only in the dead-ends (penalty state, gray) and when exiting the maze (target
state). States are assigned dynamically and might vary from run to run (for
better visibility only indices are given). The bottom part shows for 100
runs the average number of actions needed to reach target in consequent
episodes using SARSA (left) and hierarchical RL (right). Shaded areas show
standard deviation.

the states, the duality between graph representation of the
key stages of the learned process and reinforcement learning
is explicitly revealed.

Experimental evaluation of the proposed approach in-
cluding intelligent compliant controller was carried out
on Franka Emika Panda robot with 7 d.o.f. The control
algorithm was implemented as a ROS_control plug-in in
C++ using libfranka (https://frankaemika.github.io/), while
the learning algorithm was implemented in Matlab as a ROS
node. The same algorithm was used to learn two tasks: 1)
maze learning and 2) dismounting of the car bulb from the
casing.

The maze used in our experiments is shown in Fig. 4 and
shares topology with the one used in simulation (c.f Fig.
3). We kinestetically guided the robot to the arbitrary place
within the corridors of the maze and the robot had to find the
optimal way out. The only information passed to the robot
was that this was a planar case. This limited the search to
global x and y axes only. The robot autonomously detected
the target as a state, where the motion was not constrained by
the environment boundaries anymore. The number of states
found during the exploration varied from 4 to 7. In average,
the robot has learned the optimal path in 4 roll-outs. The
learning statistics coincides with the learning statistics in
Fig. 3.

Next experiment was learning to insert a car bulb into the
casing. Car bulb and the casing (Fig. 5) were 3D printed
in a tight fit. First, we learned the disassembly policy. The
robot was manually guided to the position, where the gripper

START

235

Fig. 4. Robot is autonomously learning how to exit a 3D printed maze.

could grasp the bulb. The only additional information given
to the robot was, that the search should be performed in two
d.o.f: z coordinate and rotation around z as the task requires
both linear and angular exploration.

0 5 10 20

Episodes

15

Fig. 5. The upper part shows the robot just after a successful disassembly.
The states automatically discovered by the controller are shown on a
projection of the casing gap to the plane. Start state (1) is shown in
yellow, decision (2) in orange, target (3) in green and state with penalty
(4) in white. The bottom part shows learning statistics for bulb disassembly
using hierarchical RL. On average, the robot learns to disassemble in two
steps already after the second roll-out. Due to 5% exploration rate, it can
sometimes happen that the robot still goes in the penalty state.

From the projection of the casing gap to the plane it
becomes evident that this problem can be described with
only 4 states, as illustrated in Fig. 5. During the disassembly,
the robot started in the state 1 and the only decision it had
to make was in the state 2 to arrive in the final state 3,
when the bulb is separated from the casing. There is also
a penalty state 4. The graph representation reveals another
aspect. If the proposed hierarchical RL would be applied
directly to learning of bulb insertion, it would be impossible
to autonomously determine whether the insertion has to
finish in state 1 or 4. Contrarily, the terminating condition is
well-defined for the reverse operation - when the motion gets
unconstrained (in state 3), the disassembly is completed.

After learning the disassembly policy, we generated the
corresponding assembly policy as described in Section IV
and applied ILC, which additionally diminished the forces

[
3
T

torque [Nn]

time [s]

Fig. 6. Mean forces and torques of 20 disassembly and assembly runs.
Dotted lines denote disassembly forces and torques. Solid lines denote
optimized assembly forces and torques after 5 cycles of ILC

and torques during the disassembly. We obtained 100%
disassembly and assembly success rate in 20 experiments.

VI. CONCLUSIONS

In this paper, we presented a novel approach, which
autonomously learns an assembly task from initial disassem-
bly. The disassembly-assembly process was represented as
a directed graph, where the aim was to find the optimal
path from the start node to the target node. To this end
we propose to apply hierarchical RL, where the upper level
is composed of standard SARSA algorithm and the lower
level is assigned to the intelligent controller. The output
of the learning process is smooth time-continuous policy,
appropriate for precise tasks such as assembly.

We first verified the proposed approach on the well-known
problem of maze learning, which has many similarities with
disassembly-assembly learning. Final experiment showed
that the autonomous learning of the bulb insertion can be
successfully accomplished and simplified using information
gained during disassembly.

The proposed approach has some similarities with the
learning of door opening [8], where statistical RL algorithm
was applied. However, in [8] force based policy was gener-
ated, which is less appropriate for precise tasks. Additionally,
the approach proposed in this paper is able to generate
compliant and scalable assembly primitives, which can be
reused in similar cases. Our future research will focus on
autonomous assembly learning for objects, composed of
multiple parts.

ACKNOWLEDGMENTS

The research leading to these results has received funding from

the Horizon 2020 RIA Programme grant 820767 CoLLaboratE.
REFERENCES

[1] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3,
pp- 96-114, jun 2006.

J. Buchli, E. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 820-833, 2011.

S. Calinon, L. Rozo, P. Kormusheyv, 1. Sardellitti, P. Jimenez, C. Torras,
and D. G. Caldwell, “Compliant skills transfer through kinesthetic
teaching interaction,” Transactions on Haptics, 2011.

F. J. Abu-Dakka, B. Nemec, J. A. Jgrgensen, T. R. Savarimuthu,
N. Kriiger, and A. Ude, “Adaptation of manipulation skills in physical
contact with the environment to reference force profiles,” Autonomous
Robots, vol. 39, no. 2, pp. 199-217, 2015.

[2]

[3]

[4]

236

[5]

[6]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Levine, N. Wagener, and P. Abbeel, “Learning Contact-Rich Manip-
ulation Skills with Guided Policy Search,” International Conference
on Robotics and Automation, pp. 156-163, 2015.

T. Inoue, G. D. Magistris, A. Munawar, T. Yokoya, and R. Tachibana,
“Deep reinforcement learning for high precision assembly tasks,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 819-825.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

B. Nemec, L. Zlajpah, and A. Ude, “Door opening by joining
reinforcement learning and intelligent control,” in 18th International
Conference on Advanced Robotics (ICAR), 2017, pp. 222-228.

M. Hayashi, H. Takeshita, and T. Matsuzawa, “Cognitive development
in apes and humans assessed by object manipulation,” in Cognitive
development in chimpanzees. Springer, 2006, pp. 395-410.

D. Axinte, “An inverse method of teaching specialised manufactur-
ing subjects: decomposing a focal representative product to sustain
analysis and interaction of details,” European Journal of Engineering
Education, vol. 33, no. 1, pp. 67-84, 2008.

J. S. Laursen, L.-P. Ellekilde, and U. P. Schultz, “Modelling reversible
execution of robotic assembly,” Robotica, vol. 36, no. 5, pp. 625-654,
2018.

A. Kuehl, S. Furlan, J. Gutmann, M. Meyer, and J. Franke, “Technolo-
gies and processes for the flexible robotic assembly of electric motor
stators,” in 2017 IEEE International Electric Machines and Drives
Conference (IEMDC), 2017, pp. 1-6.

U. Thomas, B. Finkemeyer, T. Kroger, and F. M. Wahl, “Error-tolerant
execution of complex robot tasks based on skill primitives,” in 2003
IEEE International Conference on Robotics and Automation, vol. 3,
2003, pp. 3069-3075.

T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of Artificial Intelligence Re-
search, vol. 13, pp. 227-303, 2000.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, Second edition. The MIT Press, Cambridge, London, 2015.
A. Ude, B. Nemec, T. Petri¢, and J. Morimoto, “Orientation in
Cartesian space dynamic movement primitives,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 2997-
3004, 2014.

R. Ravani and A. Meghdari, “Velocity distribution profile for robot
arm motion using rational Frenet-Serret curves,” Informatica, vol. 17,
no. 1, pp. 69-84, 2006.

G. Niemeyer and J.-j. E. Slotine, “A simple strategy for opening
an unknown door,” Proceedings of the 1997 IEEE International
Conference on Control Applications, pp. 1448-1453, 1997.

A. Albu-Schaffer, C. Ott, and G. Hirzinger, “A Unified Passivity-
based Control Framework for Position, Torque and Impedance Control
of Flexible Joint Robots,” The International Journal of Robotics
Research, vol. 26, no. 1, pp. 23-39, 2007.

C. Ott, A. Albu-Schaffer, A. Kugi, S. Stramigioli, and G. Hirzinger,
“A passivity based cartesian impedance controller for flexible joint
robots-part I: Torque feedback and gravity compensation,” [EEE
International Conference on Robotics & Automation, pp. 2659-2665,
2004.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors.” Neural computation, vol. 25, no. 2, pp. 328-73, 2013.
B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in /EEE-
RAS International Conference on Humanoid Robots, 2013, pp. 423—
428.

B. Nemec, L. Zlajpah, S. Slajpah, J. Piskur, and A. Ude, “An Efficient
PbD Framework for Fast Deployment of Bi-manual Assembly Tasks,”
in I8th IEEERAS International Conference on Humanoid Robots,
2018, pp. 166-173.

B. Nemec, M. Simonic, L. Zlajpah, and A. Ude, “Enhancing the
performance of adaptive iterative learning control with reinforcement
learning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017, pp. 2192 — 2199.

