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Abstract— In this paper we describe and experimentally
evaluate how to model, control, and use the capabilities of
a humanoid visual system with foveated vision. We present
a computational process that can be utilized to identify and
update the parameters of the robot’s eyes under motion, which
enables the use of 3-D vision on an active humanoid head.
We also derive the formulas expressing the geometry of our
foveated vision setup. Based on these results we can actively
control the eye gaze towards the potential regions of interest and
analyze these areas using foveation and 3-D vision processing.
Experimental results showing the accuracy of the system are
provided. The system has been demonstrated to be sufficiently
accurate to realize grasping using active 3-D vision.

I. INTRODUCTION

Foveated vision refers to the property of a human retina,
on which the resolution gradually decreases away from the
fovea. The main benefit of this arrangement is the relatively
low average image resolution over the complete field of
view while maintaining high resolution at the center of view.
In this way human vision balances the trade-offs between
the necessary computational resources and the accuracy of
computation. It is clear that foveated vision only makes sense
on an active system where it is possible to direct the gaze
towards areas of interest that need to be processed with
higher precision. By replicating the foveated structure of the
human eye and the human oculomotor system, humanoid
robot vision becomes significantly more complex than stan-
dard active vision.

There are various ways to realize foveated vision on a
humanoid robot. The approach we followed (see Fig. 1)
is to use two cameras in each eye equipped with lenses
with different focal lengths [1], [2], [3], [4]. In this way we
can simultaneously acquire wide and narrow field-of-view
images. While the physical resolution of all cameras is the
same, wide-angle (or peripheral) cameras provide images of
larger regions at a lower resolution, whereas narrow-angle
(or foveal) cameras provide images of smaller areas but at
a higher resolution. For many tasks it is important that the
robot can use information from peripheral views to get the
area of interest into foveal views because it is difficult to
move the eyes quickly and accurately enough to keep the
area of interest over the center of foveal views at all times.
For example, when tracking objects can easily be lost from
foveal views, thus we cannot control the head using foveal
cameras only [5]. On the other hand, the object is much less
likely to disappear from peripheral views due to the wider
field of view of these cameras.

Fig. 1. The head of humanoid robot CB-i [6]. Foveation is realized using
two cameras in each eye. Each eye has two independent degrees of freedom:
pan (right-left) and tilt (up-down) rotation. The foveal cameras are placed
vertically below the peripheral cameras.

The ability to use 3-D vision is very important for ma-
nipulation tasks in which the robot performs high-precision
actions such as grasping. However, using 3-D vision on an
active system is much more difficult than on a static system
because various transformations need to be updated on-line
to enable 3-D computations. On the other hand, we do not
want to give up the ability to use foveated vision. Hence we
need to understand how to model the kinematic relationships
between different cameras and how to update them. In this
paper we put the foundations for the integrated use of 3-D
vision and foveation.

II. CALIBRATION OF A HUMANOID VISUAL SYSTEM

As described in the introduction, a humanoid vision sys-
tem consists of two eyes, each with one or more independent
degrees of freedom. Since the relative arrangement of the
cameras mounted in different eyes changes as the eyes
move, 3-D vision is possible only if both the optics and
the motor system of the eyes are properly modeled. Here
we first briefly describe how to calibrate the cameras at a
specific, static configuration1. This is needed to explain the
real contributions of the paper. We continue by providing
the methodology to compute the transformation between the
camera and motor coordinate systems and finally describe
how to realize 3-D vision when the eyes move.

A. Static Stereo Camera Calibration

For the purpose of stereo calibration, we model the
cameras by a standard pinhole camera model. We denote

1The eyes of our robot have independent pan and tilt degrees of freedom.
We chose the arrangement in which the cameras are aligned (pan = tilt =
0) as a special configuration used to calibrate the optical system.



a 3-D point by y =
[
x y z

]T
and a 2-D point by

u =
[
u v

]T
. Let ỹ =

[
x y z 1

]T
and ũ =[

u v 1
]T

be the homogeneous coordinates of y and
u, respectively. The relationship between a 3-D point y and
its projection u is then given by [7]

sũ = A
[
R t

]
ỹ, (1)

where s is an arbitrary scale factor, R and t are the extrinsic
parameters denoting the rotation and translation that relate
the world coordinate system to the camera coordinate system
and A is the intrinsic matrix

A =

 α γ u0
0 β v0
0 0 1

 . (2)

Here α and β are the scale factors, γ is the parameter
describing the skewness of the two image axes, and (u0, v0)
is the principal point. The internal camera parameters A can
be estimated by a calibration process described in [7]. For
R = I and t = 0, the projection is given in the internal
image coordinate system.

The effects of lens distortion are not considered in the
above camera model. Such an assumption is justified for
foveal cameras, which are equipped with lenses with rel-
atively long focal lengths that normally do not exhibit
noticeable distortion effects. This is especially true because
the distortion function is usually dominated by radial com-
ponents [8], [7]. Conversely, to achieve wide field of view,
peripheral cameras need to have lenses with shorter focal
lengths. Cameras with such lenses often produce significantly
distorted images. However, the distortion can be corrected
in a preprocessing step using a suitable distortion correction
procedure, e. g. the one described in [7]. Equation (1) is valid
for the distortion-corrected pixels.

For stereo vision, we need to estimate the transformation
matrix between the two cameras, e. g. from right to left
camera. In this case the calibration of a stereo camera system
involves the estimation of the internal parameters of left and
right camera Al and Ar, respectively, and the estimation of
the transformation matrix from the right to the left camera
frame Trl

c . This is a classic problem and we omit the details
here. Given the corresponding points ul, ur, the 3-D position
yl in the left camera coordinate system can be calculated by
solving

ũl = Alyl, (3)
ũr = Aryr = ArT

rl
c yl. (4)

Note that distortion should be corrected before applying the
above formulas and we therefore do not need to consider it
in our analysis.

B. Acquiring Eye-Camera Transformation

Now we turn our attention towards the parameters that
need to be estimated on an active humanoid vision system.
It is very difficult to mount the cameras on the head so
that the internal camera coordinate system would be aligned
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Fig. 2. Coordinate systems that need to be considered for the calculation
of eye-camera transformation

with the eye rotation axes precisely. Hence to calculate
how the cameras move, we need to estimate the (unknown)
transformation from the eye coordinate system to the camera
coordinate system (see Fig. 2). We denote this transformation
by Tec. To learn it, a calibration object is placed at a fixed
location in front of the robot, which moves the eyes to a
number of orientations. The poses of the calibration object
are estimated at all these configurations using the method
described in [7]. Let Tj

co and Tj
er, j = 0, . . . , n, respectively

be the poses of the calibration object in the camera coordinate
system and the poses of the eyes in the fixed eye coordinate
system (in which the eye rotations are defined). Tj

er can be
easily computed using the joint angles obtained by robot joint
sensors and the kinematics of the eye’s motor system. On
our robot, each eye has an independent pan and tilt degree of
freedom with orthogonal and intersecting rotational axes, and
the resulting transformation matrices Tj

er are pure rotations.
The presented approach is, however, more general and does
not make this specific assumption.

Based on Fig. 2, we have the following relationship for
each j, j = 1, . . . , n,

T0
co

−1
Tj

co = TecT
0
er T

j
er

−1
T−1

ec . (5)

Lets denote Aj = T0
co

−1
Tj

co, Bj = T0
er T

j
er

−1
, and X =

Tec. Then we can rewrite the above equations as

AjX = XBj , (6)

where Aj , Bj , X ∈ SE(3). SE(3) is the special Euclidean
group of rigid body transformations. As noticed by the
authors of [9], [10], this equation often arises in problems
associated with sensor-robot calibration.

The equation system (6) can be solved analytically by con-
sidering the properties of the logarithmic map on SE(3). See
[11] for an in-depth discussion of the special Euclidean group
and the logarithmic map. Writing rigid body transformations
as

X =

[
RX tX
0 1

]
,
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Fig. 3. Coordinate systems that need to be accounted for to realize 3-D vision on an active humanoid robot head

logarithmic map can be applied to transform rotation ma-
trices into skew symmetric matrices [aj ] = log

(
RAj

)
and

[bj ] = log
(
RBj

)
[11], where

[x] =

 0 −x3 x2
x3 0 −x1
−x2 x1 0.

 .
Based on the fact that [bj ] = log

(
RBj

)
=

log
(
RXRAjR

T
X

)
= RX log

(
RAj

)
RT

X = [RXaj ] and
using the results from [12], a least-squares solution for (6)
was provided in [10], which we repeat here for the sake of
completeness. First equation system (6) is rewritten as

RXaj = bj (7)(
I−RAj

)
tX = tAj −RXtBj . (8)

The least squares solution of the equation system (7) on
SO(3) (group of all rotation matrices) is then given by [12]

RX =
(
MTM

)−1/2
MT , M =

N∑
j=1

bja
T
j . (9)

Once we know RX, Eq. (8) becomes a classical least-squares
problem that can be solved for tX using standard methods.

Thus by solving Eq. (6) we can compute the transforma-
tion between the eye and camera coordinate systems Tl

ec and
Tr

ec for both left and right camera. Note that this equation
can be solved uniquely if and only if log(Ai)× log(Aj) 6= 0
and log(Bi)× log(Bj) 6= 0 for at least one pair of i, j. This
condition is fulfilled on systems with independent pan and
tilt, which are the most useful systems for foveated vision.
Note also that it is important to identify the eye kinematics
together with the rest of the robot’s kinematics, otherwise it is
not possible to transform the positions in the eye coordinates
into the positions in the robot’s body coordinates using Eq.
(12). We use standard approaches for the identification of the
robot kinematics for this purpose [6].

C. Active Stereo Vision

The transformation Trl
c of Eq. (4) is not constant on an

active system and therefore needs to be estimated as the

eyes move. This can be accomplished by utilizing the results
of the static camera calibration process of Sec. II-A, eye-
camera transformation of Sec. II-B, and using known eye
kinematics. The robot’s eye coordinate systems are shown
in Fig. 3. Here Trl

c (θ0) is the transformation from right
to left camera at joint configuration θ0, which is estimated
by the static stereo camera calibration. Tl

ec, Tr
ec are the

transformations between the left and right eye and camera,
respectively. They are estimated by the calibration process
of Sec. II-B and do not depend on the eyes’ joint angles.
Tl

er(θ), T
r
er(θ) are the current eye postures at joint angles

θ. Tl
er(θ0), T

r
er(θ0), T

l
er(θ), T

r
er(θ) can be computed using

the known eye kinematics and proprioception.
To compute transformation Trl

c (θ), which changes as the
eyes move, we first calculate the transformation Trl

e between
the fixed eye coordinate systems (with respect to the robot
head)

Trl
e = Tr

er(θ0)T
r
ecT

rl
c (θ0) T

l
ec

−1
Tl

ec(θ0)
−1. (10)

Trl
e is constant and consequently there are only constant

terms in the above equation. To transform the coordinates
of a 3-D point from the left to the right camera frame, we
can use the following formula (see also Fig. 3)

yr = Trl
c (θ)yl = Tr

ec
−1 Tr

er(θ)
−1Trl

e T
l
er(θ)T

l
ecyl. (11)

The above transformation allows us to calculate the 3-D
point coordinates yl in the rotated left camera coordinate
system by solving the equation system (3), (4). Finally,
the following transformation can be applied to compute the
position in the robot body coordinates

yb = Tl
be(θ)T

l
er(θ)T

l
ecyl, (12)

where Tl
be(θ) is the position and orientation of the left eye

in the body coordinate system before the eye rotation.

III. IMPLEMENTING FOVEATION USING 3-D VISION

In this section we derive the mathematical formulas that
enable the robot to move the eyes so that the area of interest
is placed over the center of the fovea based on information
from peripheral images. As mentioned in the introduction,



Fig. 4. A typical calibration sequence (upper row: left eye images, lower row: right eye images). The eyes are moved to acquire the snapshots of the
calibration object placed at the same location, but from different eye orientations.

it is important that the robot can use information from
peripheral views to control the eyes because it is difficult
to move the cameras quickly and accurately enough to keep
the area of interest over the center of foveal views at all
times.

We denote by Af and Ap the projection matrices of
the peripheral and foveal cameras. Since the mathematics
is the same for both left and right eyes, we can drop the
corresponding eye indices. Without loss of generality we
can assume that the origin of the image coordinate system
coincides with the camera coordinate system up to the
translation along the optical axis. This can be achieved by
subtracting the coordinates of the principal point (u0, v0)
from the pixel coordinates. In this case we have

Af =

 αf γf 0
0 βf 0
0 0 1

 and Ap =

 αp γp 0
0 βp 0
0 0 1

 .
Let tfp be the position of the origin of the peripheral camera
coordinate system expressed in the foveal camera coordinate
system and let Rfp be the rotation matrix that rotates the
basis vectors of the foveal camera coordinate system into
the basis vectors of the peripheral camera coordinate system.
Since the foveal and peripheral camera are rigidly attached
to each other, tfp and Rfp are both constant and can be
estimated using standard calibration techniques. Let yf and
yp be the position of a 3-D point2 expressed in the foveal
and peripheral camera system, respectively. We then have

yp = RT
fp(yf − tfp). (13)

The projections of a 3-D point yf = (x, y, z) onto the planes
of both cameras are given by

uf =
αfx+ γfy

z
, (14)

vf =
βfy

z
, (15)

and

up =
αpr1 · (yf − tfp) + γpr2 · (yf − tfp)

r3 · (yf − tfp)
, (16)

vp =
βpr2 · (yf − tfp)

r3 · (yf − tfp)
, (17)

where r1, r2, and r3 are the rows of the rotation matrix
RT

fp =
[
rT1 rT2 rT3

]T
. yf projects onto the principal

2In practice y would be the center of the area of interest

point in the foveal camera if uf = vf = 0. Assuming that
the point is in front of the camera, hence z > 0, we obtain
from Eq. (14) and (15) that x = y = 0, which means that
the point must lie on the optical axis of the foveal camera.
Inserting this into Eq. (16) and (17), we obtain the following
expression for the ideal position (ûp, v̂p) in the peripheral
camera image that results in the projection onto the principal
point in the foveal camera image

ûp=
αpr1 · tfp + γpr2 · tfp − (αpr13 + γpr23)z

r3 · tfp − r33z
, (18)

v̂p=
βpr2 · tfp − βpr23z

r3 · tfp − r33z
, (19)

where
[
r13 r23 r33

]T
is the third column of RT

fp. Note
that the ideal position in the periphery is independent from
the intrinsic parameters of the foveal camera. It depends,
however, on the distance z of the point of interest from
the cameras. Hence to use this formula, we need to be able
to calculate depth information, which can be accomplished
based on the approaches of the previous section.

By applying the above equations, we can turn the eye
gaze towards the object and keep the object in the center of
foveal cameras based on information from peripheral views
and using image-based closed-loop control [13].

IV. EXPERIMENTAL RESULTS

It is well known that the error in depth is proportional to
the disparity error and increases with the squared distance
of the object from the camera [14]

εz =
z2

bf
εd, (20)

where εz is the depth error, z is the depth, b is the baseline,
f is the focal length of the camera in pixels, and εd is
the disparity error in pixels. The error in depth is always
larger than the errors in directions along the camera axes. In
static systems with accurately calibrated camera parameters,
the disparity error is essentially the same as the matching
error. However, in the case of an active humanoid head,
there is another source of error, namely errors caused by
the inaccurate re-calibration of the system when the eyes
move, i.e. the errors in Trl

c (θ) (see Fig. 5). This error can be
caused by inaccurate sensor readings, time delays between
image capture and reading of joint angles, vibrations, etc.
For the pixel at the image center, we have the following
expression

εd = f tan(α). (21)
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Fig. 5. Disparity error because of the inaccurate orientation. Here α is the
error in the orientation between the two image planes, f the focal length
in pixel units, and εd the disparity error for the pixel at the center of the
image plane caused by the error in orientation.

The above equation shows that the disparity error caused
by the errors in the re-calibration process increases with the
focal length of the camera. Hence the conventional wisdom
that depth measurements are more accurate when using
narrower lenses with longer focal lengths is not necessarily
true on active systems because the disparity errors can
increase with focal length.

In our experiments we first calibrated the cameras at a
particular configuration, which we chose to be the one with
the straightforward gaze (eye angles equal to zero). In the
second phase, transformation Trl

e of Eq. (10) was estimated.
We then moved the eyes along the following trajectories

θ1pan = 0.25 cos(t), θ1tilt = 0.25 cos(t/1.5), (22)

θ2pan = 0.25 cos(t/2), θ2tilt = 0.25 cos(t/2.5). (23)

In the first test both eyes remained parallel and moved
according to Eq. (22), whereas in the second test the first eye
(left eye) moved along the trajectory given by Eq. (22) and
the second eye (right eye) along the trajectory given by Eq.
(23). The observed object was fixed in all experiments and
did not move in space. The task was to estimate the object
position in a fixed head coordinate system. The x axis of
this coordinate system was roughly aligned with the optical
axis of the camera at zero configuration, thus the estimated
x coordinates correspond to the depth measurement. See the
submitted video to inspect the resulting image motion caused
by the eye movement.

Fig. 6 and 7 show that the system is fairly accurate from
a distance of about 0.5 meter. Although the eye movement
travelled the course of 0.5 radians for each eye degree of
freedom, the system was able to estimate a rather constant
object position. As one could expect, the system was more
accurate for parallel eye movements, which are also much
more natural than divergent eye movements, which humans
normally do not perform. The largest errors can be found in
the depth estimates, but this is expected for stereo vision.

Our results confirm that the error increases significantly
with the distance of the object from the eyes (see Fig. 8 and
9). Nevertheless, the results remain accurate except for the
depth estimation. The standard deviation in the depth error
for the case of parallel eye movements was 6.6 cm, which
is still sufficient to roughly reach for the object. However,
this result shows that some corrective movements need to be
performed when the robot attempts to grasp an object. Since
at this point of the grasping action the robot is close to the
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Fig. 6. Fluctuation of the estimated positions in x (blue),
y (green), and z (red) coordinates for the parallel eye move-
ment. The observed point was fixed and the estimated mean po-
sition was (0.426,−0.021,−0.081) m. The standard deviation was
(0.010, 0.002, 0.005) m. Focal length of the lens was 2.8 mm.
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Fig. 7. Fluctuation of the estimated positions in x (blue), y (green), and
z (red) coordinates for the divergent eye movement. The observed point
was fixed and the estimated mean position was (0.421, -0.072, -0.088) m.
The standard deviation was (0.020, 0.003, 0.007) m. Focal length of the
lens was 2.8 mm.

object and since the cameras do not need to move any more,
we can expect smaller errors in this situation and we can
conclude that our system is accurate enough to implement
grasping behaviors.

In Fig. 10 and 11 we show the results when using lenses
with a longer focal length. Considering a slightly longer
depth distance, these results are comparable to the results
of Fig. 6 and 7. Because of the not completely accurate re-
calibration of the system, we cannot expect to significantly
increase the accuracy when using lenses with longer focal
lengths. We note however, that the resolution of objects in
such images is still higher than in the images acquired by
cameras with wider field-of-view, which can be important
for vision processing.

The analysis of Eq. (18) and (19) shows that the ideal
image position for foveation in the peripheral images con-
verges to a fixed value as depth (z in this case) tends to
infinity. Hence the errors in depth at large distances do not
significantly influence the estimates of the image position
for foveation. We may thus conclude that the implemented
system is sufficiently precise to implement foveation based
on Eq. (18) and (19) and image based feedback control.

V. CONCLUSIONS

In this paper we developed mathematical machinery nec-
essary to implement 3-D vision and foveation on an active
humanoid head. The system was fully implemented on a
humanoid robot CB-i. Our experiments have shown that it
is possible to acquire all the necessary parameters using a
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Fig. 8. Fluctuation of the estimated positions in x (blue), y (green), and
z (red) coordinates for the parallel eye movement. The observed point was
fixed and the estimated mean position was(1.106, 0.017, 0.003) m. The
standard deviation was (0.066, 0.006, 0.008) m. Focal length of the lens
was 2.8 mm.
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Fig. 9. Fluctuation of the estimated positions in x (blue), y (green), and z
(red) coordinates for the divergent eye movement. The observed point was
fixed and the estimated mean position was (1.109, 0.017, 0.001) m. The
standard deviation was (0.102, 0.011, 0.007) m. Focal length of the lens
was 2.8 mm.
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Fig. 10. Fluctuation of the estimated positions in x (blue), y (green), and
z (red) coordinates for the parallel eye movement. The observed point was
fixed and the estimated mean position was (0.642, 0.173, -0.035) m. The
standard deviation was (0.019, 0.007, 0.003) m. Focal length of the lens
was 4.0 mm.
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Fig. 11. Fluctuation of the estimated positions in x (blue), y (green), and
z (red) coordinates for the divergent eye movement. The observed point was
fixed and the estimated mean position was (0.643, 0.173, -0.035) m. The
standard deviation was (0.029, 0.011, 0.002) m. Focal length of the lens
was 4.0 mm.

Fig. 12. Grasping an object held by a person. The eyes were continuously
centered on the object and the 3-D object position was updated during
grasping.

planar calibration pattern such as the one in Fig. 4. This is
important because such patterns are much easier to construct
and process than classic 3-D calibration objects. The system
have been shown to be accurate enough to realize grasping
behaviors using active 3-D vision (see Fig. 12).
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