
Modular ROS-based software architecture for reconfigurable, Industry
4.0 compatible robotic workcells

Mihael Simonič1, Rok Pahič1, Timotej Gašpar1, Saeed Abdolshah2, Sami Haddadin2, Manuel G. Catalano3,
Florentin Wörgötter4, and Aleš Ude1

Abstract— In this paper we present a novel software archi-
tecture for flexible and modular robotic workcells. It aims at
providing robot independent, ROS-based programming envi-
ronment that reflects hardware modularity and enables plug-
and-produce connectivity within the workcell both in hardware
and software. The distinguishing property of the developed
architecture is that it supports the development process at
all levels and also enables easy workcell setup and adapta-
tion. Interfaces for the programming of robot movements by
kinesthetic teaching and high-level task programming based on
FlexBE are provided to enable workcell programming also by
non-robotic experts. While the proposed system was developed
to facilitate the implementation of automated disassembly
solutions, it is of interest also for other industrial processes
where high degree of reconfigurability is required, e. g. for
automated production of small batch size or one-of-a-kind
products.

I. INTRODUCTION

One of the cornerstones of Industry 4.0 is the individual-
ization of products under the conditions of large batch size
production [1]. This is still problematic for robot-supported
manufacturing because when setting up a traditional robotic
cell to automate a specific task, it is necessary to anticipate all
possible situations in advance and create a usually complex
robotic program. Under such circumstances, every change in
the production process requires both hardware and software
modifications to the cell. Unless both hardware and software
are modular and support easy and fast implementation of
changes in the production process, the implementation of
such changes results in long down-times, which can last for
days or even weeks. Thus for more demanding tasks typical
for Industry 4.0 where robot programs change frequently,
a flexible robotic system that can be quickly adapted to
various circumstances is required. This has to be addressed
by enabling quick setup and reconfigurability [2] at both
hardware and software level.

To facilitate the implementation of such workcells, we
developed a modular software architecture that uses Robot
Operating System (ROS) [3] as the backbone. It provides

1Department of Automatics, Biocybernetics and Robotics, Jožef
Stefan Institute, Ljubljana, Slovenia, e-mail: {mihael.simonic,
rok.pahic, timotej.gaspar, ales.ude}@ijs.si

2Munich School of Robotics and Machine Intelligence, Techni-
cal University of Munich, Germany, e-mail: {saeed.abdolshah,
sami.haddadin}@tum.de

3Italian Insitute of Technology, Genoa, Italy, e-mail:
manuel.catalano@iit.it

4Bernstein Center for Computational Neuroscience, Georg-August-
Universität Göttingen, Germany, e-mail: worgott@gwdg.de

Fig. 1. Reconfigurable robotic workcell for automated recycling of
electronic waste. The targeted recycling procedure involves the disassembly
of electronic devices to remove batteries.

standardized interfaces to robots, sensors, grippers, and pe-
ripheral hardware elements and enables plug-and-produce
connectivity and communication within the cell. Further-
more, toolchains for quick and efficient setup and program-
ming on the workcell (task-level programming based on
FlexBE [4], skill specification and workcell calibration by
kinesthetic teaching) are integrated into the overall software
architecture. Compared to our previous software architecture
[5], [6], which was primarily aimed at automated recon-
figuration of robotic workcells, we accommodate a much
higher degree of hardware and software modularity within
the system proposed in this paper.

The proposed design enables that the cell’s functionalities
can be expanded without disrupting the existing software
architecture. This is supported by making use of Docker
containers for the integration of new software modules. In
the Docker containers, new modules can be deployed with
all the necessary libraries without causing conflicts with any
preexisting software packages. Developers can thus integrate
new software without the need to reprogram any of the
existing modules, which also eases the deployment of new
hardware in the cell.

The rest of the paper is organized as follows. In Section II
we describe the core software architecture of the system and
the archetypical hardware module from which the complete
workcell can be constructed. In Section IV we present the
more advanced module used to mount and control a robot
as well as user-friendly tools that are made available for



Robot Module

Peripheral interface

• Relays

• Pneumatic valves

• Serial communication

Network switch

Microcomputer

ROS interface to 

the peripheral 

elements

Franka low-
level controller

Franka ROS 
controller

Workcell Control Module
• MongoDB database

• Kinesthetic teaching interface

• FlexBE behavior programming

• Simulation

Ethernet

Plug and Produce 
Connector

ROS network

Device dependent 
connectivity

Module

Legend Robot Module

Peripheral interface

• Relays

• Pneumatic valves

• Serial communication

Network switch

Micro-

computer

ROS interface to 

the peripheral 

elements

Franka low-

level controller

Franka ROS 

controller

Cutter Module

Peripheral 

interface

• Relays

• Pneumatic valves

• Serial 

communication

Network switch

Micro-

computer

ROS interface 

to the 

peripheral 

elements

Pneu-

matic

cutter

Vise Module

Network switch

Pneumatic 

revolving 

vice

Micro-

computer

ROS 

interface to 

the 

peripheral 

elements

Peripheral 

interface

• Relays

• Pneumatic valves

• Serial 

communication

Archetypical Module

Peripheral interface

• Relays

• Pneumatic valves

• Serial communication

Network switch

Microcomputer

ROS interface to 

the peripheral 

elements

Tool Exchange Module

Network switch

Peripheral interface

• Relays

• Pneumatic valves

• Serial 

communication

Microcomputer

ROS interface to 

the peripheral 

elements

Fig. 2. Software architecture to control the recycling cell from Fig. 1. Except for the “Workcell Control Modue”, all other modules correspond to one
of the tables from which the working area of the cell is constructed.

easy workcell setup and programming. The application of the
developed architecture in the recycling domain is presented
in Section IV. It demonstrates the necessity for modular soft-
ware and hardware design and its applicability to situations
where the manufacturing process changes frequently. Finally,
in Section V our current implementation and plans for future
work are discussed.

II. SYSTEM ARCHITECTURE OVERVIEW

The purpose of the software architecture is to define all the
constituent modules and ensure connectivity between them in
the context of data flow. While several software frameworks
exist [7], [8], the Robot Operating System (ROS) [3] provides
the most widely used framework for the development of
robotic software architectures where components exchange
data over the shared network. Various tools and features
that are available within ROS contribute to realizing the
pursued software reconfigurability of the cell [5]. In our case,
software modularity and reconfigurability mean that it is
possible to expand or adapt the cell’s functionalities without
disrupting the existing software architecture. It should be
possible to develop new software components without the
need to reprogram any of the existing ROS nodes (the defi-
nition of ROS nodes is provided below). This also eases the
development and integration of new hardware components
with their own ROS nodes.

Of the many features and tools provided within ROS, we
use the following ones to achieve a high degree of software
modularity in our system:

• nodes – any program (written in any programming

language) that has connectivity to the ROS network and
can therefore access to and publish data across it (i.e.
low-level hardware drivers, high-level state machines,
trajectory generation, etc.)

• topics – a publish/subscribe table advertised by each
ROS node that defines the data that can be provided
by the said node, e. g. robot joint states, force-torque
sensor data, state of the cutter, etc.

• messages – a predefined structure to encapsulate data
to be transferred across the ROS network for other
nodes to read, e. g. robot joint states are written into
sensor msgs/JointStates, which is a predefined ROS
message structure that can be sent across the ROS
network.

• parameter server – used to store various static configu-
ration parameters, e.g. controller gains, camera exposure
parameters, kinematic models, etc.

• services – a request/response based Remote Procedure
Call (RPC) interface that a node can expose in order
to trigger short-running tasks that do not require pre-
emption or monitoring from within the ROS network,
e. g. visual quality control, pneumatic gripper actuation,
tool exchange system lock/unlock, gravity compensa-
tion mode toggle, etc.

• action servers – similarly to services, a request/response
RPC exposed by a node. They are, however, used to
trigger long-running preemptable tasks from within the
ROS network that provide feedback throughout their
execution, e. g. robot movement tasks, servo gripper
grasping tasks, flexible fixture reconfiguration [9], etc.



In the developed architecture, each module is connected to
the same network in order to broadcast its data and receive
information and instructions about what action to perform
at any given time. An example implementation is shown in
Figure 2. Its constituent components and their integration are
described in more detail throughout this paper.

Apart from ensuring software reconfigurability, the pro-
posed architecture allows us to control and monitor all the
different modules in the cell as well as the workcell as a
whole. The developed system is designed in such a way that
each module connects directly to the ROS network. This way
we ensure that the data is structured and parsable by all of
the software components within the developed system.

An important feature of the proposed architecture is
that we can program and exchange information between
heterogeneous hardware modules within a single software
architecture. Once the developer integrates a new module into
ROS, the workcell programmer needs to know only which
functionalities the new module exposes to ROS. No special
knowledge about hardware-specific software is needed to
start programming new workcell applications.

Fig. 3. Plug-and-Produce (PnP) connector that provides connectivity,
mechanical coupling, and power (electric and pneumatic)

A. Archetypical workcell module and PnP connectivity

On the hardware side, each module in the proposed cell
is built according to the the same archetypical design: a
steel frame that provides rigidity, with aluminium work
surface that allows for easy mounting of module-specific
equipment, e.g. robots, sensors, and auxiliary devices (see
also Fig. 1). Each module is further equipped with sufficient
computational hardware to run ROS nodes, thus exposing
its data and functionalities to the cell’s ROS environment.
This way the modules can be controlled by the top-level
task scheduling software as soon as they are connected to
the cell. Some modules may require more than just network
connectivity in order to function properly, e. g. compressed
air or electric power. To provide such capabilities, modules
are connected to each other using Plug-and-Produce (PnP)
connectors shown in Fig. 3. More details about hardware
design and PnP connectors are provided in [10].

The computational hardware that every module in the cell
is equipped with is a Raspberry Pi 4 microcomputer. We
mounted the so-called ”PoE Hat” on each Raspberry Pi. This
allows it to be powered using power over ethernet (PoE)
standard, thus reducing the amount of the necessary power
supply units. There are other devices that can make use of

the PoE connectivity (e.g. cameras). To connect them to the
network and at the same time provide them with power,
we installed a PoE-enabled network switch on each of the
modules.

A Raspberry Pi microcomputer provides us with the ability
to pass control signals and read the sensor values by attaching
the auxiliary devices (equipment) to the General Purpose
Input/Output pins (GPIOs) of the Raspberry Pi. When a new
auxiliary device is connected to the GPIOs of the Raspberry
Pi, each GPIO in use must be properly configured by a
suitable software library. Since the auxiliary devices attached
to each individual module needs to work in synchronization
with the robots and the auxiliary equipment of other modules,
we need to be able to control the equipment globally through-
out the cell. Therefore we have prepared a ROS package
that wraps the developed software library for configuring and
controlling the GPIOs in a ROS node1. This way we enable
the configuration and control of auxiliary devices through
ROS services. The cell programmer no longer needs to deal
with the GPIOs but can control and communicate with the
auxiliary devices through ROS interfaces.

B. Quick integration of new modules & auxiliary devices

For the operation of each module’s auxiliary devices, we
implemented two ROS nodes running on each individual
module’s microcomputer. The first ROS node is “Equip-
ment Server”, which configures control of the equipment
connected through the GPIOs according to the module con-
figuration file (in human-readable yaml format) and forwards
control commands from ROS services to the connected
equipment. The second ROS node is “Equipment Manager”,
which allows a user to modify the module’s configuration
file via a ROS service.

When the “Equipment Server” node is started, it first reads
the individual module’s configuration file, which is stored lo-
cally on the module’s microcomputer, and then configures the
required GPIOs. The configuration file contains information
which additional equipment is attached to the module and to
which GPIOs it is connected. Once GPIOs are configured,
the “Equipment Server” creates a separate ROS service for
each GPIO to control it. The names of the created ROS
services are defined in the configuration file. In operation,
the “Equipment Server” accepts the commands sent to its
ROS services and controls the equipment connected to the
GPIOs accordingly. Currently the “Equipment Server” can
handle three types of different GPIO configurations and
control interactions. The first possible configuration is a
digital output where a service call can set the digital state of
the GPIO, making it suitable for controlling devices such as
pneumatic valves. The next configuration is a digital input
that allows the digital state of devices such as digital sensors
to be read on a service call. The last is a configuration
that, according to the value in the service call, controls
pulse width modulation (PWM) signals that can be used
to control devices such as step motors. The node also has

1https://github.com/ReconCycle/raspi_ros



Fig. 4. Integration of controller plugins into the overall ROS arhitecture with ros control framework.

a restart service that – when triggered – closes all active
services, releases the pin’s hardware interface, and reads the
configuration file again. Then it starts with the newly read
configuration.

When switching from one production process to another,
we often need to change, add or remove various auxiliary
devices attached to the modules. The “Equipment Manager”
node allows us in these cases to quickly change the “Equip-
ment Server” configuration according to the changes in the
auxiliary equipment. We change the configuration by sending
the new desired configuration to the “Equipment Manager”
ROS service. When the Equipment Manager receives the new
desired configuration, it overwrites the configuration file and
restarts the “Equipment Server” by calling the node’s restart
service. In this way, the “Equipment Server” reconfigures
itself according to the new configuration file.

To avoid writing or correcting configuration files manually,
we created a ROS package2 with a more user-friendly
approach to handling configuration files. This package con-
tains a client that can communicate with the “Equipment
Manager”. When the client is started, it opens a terminal
window user interface that guides the user through creating
or modifying configuration files. At the beginning, the client
searches for all “Equipment Managers” from the different
modules in its reach and offers the user to select the one
s/he wants to configure. In the next steps, the user can choose
whether to modify the currently active configuration file or
start over with a blank template. According to the selected
option, the client then reads the correct configuration file
from the “Equipment Manager”. When changing the config-
uration, the user only needs to answer the questions about
the various parameter values asked by the terminal guide.
When the user is satisfied with the desired configuration, the
client automatically changes the configuration file and sends
it to the module “Equipment Manager”.

2https://github.com/ReconCycle/raspi-ros-client

C. Docker containers

Although ROS provides a good framework for the de-
velopment of robotic workcells, setting it up on a single
computer still takes some effort and time. Our system is
composed of several modules, each with their own computer.
Setting up ROS and maintaining all of them would be
very time-consuming. Moreover, the transfer of ROS code
from one machine to another can be rather difficult. These
difficulties arise if the developers do not properly define
all the external resources (dependencies) that their code
depends on. To address these two issues, we decided to
base our development process and overall system on Docker
containers.3

A Docker container is an isolated environment that is
built from a Dockerfile. In this file, we specify which
Linux distribution the container is based on and what types
of dependencies should be installed. The main advantage
of this approach is that unlike virtual machines, Docker
containers do not emulate the host’s hardware but share it.
This in turn means that, compared to a virtual machine, a
Docker container uses fewer resources. Additionally, once
the Dockerfile has been written, the image that is built
from it will be the same regardless of the platform it
runs on. In terms of deploying ROS software on different
modules, this means that the developer designs the code
in such a way that it runs within the Docker container
and thus removes the commonly encountered problem of
unmet software dependencies when transferring the code.
The details of how the Raspberry Pi integrates into each
workcell module are provided in Section II-B.

In terms of network connectivity, Docker containers can
communicate between each other just like any other pro-
grams, including ROS nodes. This means that different soft-
ware components running in different Docker containers can
exchange data seamlessly. Therefore, using this technology

3https://docs.docker.com/



does not hinder the overall ROS software architecture but it
simplifies the set up of modules and the transfer of code.

III. ADVANCED FUNCTIONALITIES AND GUIS

A. Robot module

The archetypical workcell module presented in Section II-
A is in most cases equipped with relatively simple devices
that can be controlled through a microcomputer. However,
for more complex equipment such as robots, more advanced
control schemes are required. Consequently, both hardware
and software must be modified to accommodate such equip-
ment. Our example cell in Fig. 1 contains two robot modules.

We based the software of the robot module on the
ros control framework, which provides a hardware ab-
straction layer (RobotHW) that enables standardized ac-
cess to actuators and comes with a common interface
(ControllerBase) to write robot-agnostic controllers
[11]. The robot middleware is represented by the robot’s
hardware interface. A reference implementation for the
Franka Emika Panda robot is provided by the franka hw
ROS package using the libfranka library as shown in Fig.
44. It enables compliant control needed in many disassembly
tasks.

To enable simulation in Gazebo, we used a community-
built Panda model for Gazebo [12] and developed a plugin
that mimics the API of the real Panda robot, enabling easy
sim-to-real transfer5. This way, the trajectory generation and
control algorithms can be developed independently of the
robot employed in the cell. In our software stack, various
trajectory generation algorithms have been implemented to
cover the most common robot motion needs:

• joint space point-to-point trajectory with trapezoidal
velocity profile [13],

• Cartesian space straight line point-to-point motion &
quaternion SLERP trajectory [14] with minimum jerk
time evolution,

• joint space point-to-point trajectory with trapezoidal
velocity profile, with the initial and final pose provided
in Cartesian space and transformed into joint space
using inverse kinematics,

• dynamic movement primitive (DMP) in joint space [15],
• Cartesian space DMP [16], [17].
To enable interaction with these plugins, we provided a

separate ROS action server wrapper for each of the motion
generators (JointTrapVel, JointDMP, JointTrapVelCartTarget,
CartDMO, CartLinTask in Fig. 4). Whenever a new move-
ment request arrives to a specific action server (in ROS
terminology action goal), the underlying motion generator
plugin generates either a joint or Cartesian space trajectory.
The trajectory points are processed in a parallel real-time
safe thread, running at 1 kHZ. In this thread, we rely
on joint and Cartesian impedance control to calculate the
desired joint torques. Finally, the calculated torques are sent
to the low-level robot controller via RobotHW interface,

4https://github.com/frankaemika/franka_ros
5https://github.com/smihael/panda_sim_hw

provided by the franka hw package for real Panda robot
arm or panda sim hw package for Gazebo simulation,
respectively.

The main benefit of using ROS action servers to trigger
robot motion is the ability to cancel the request during exe-
cution and to get periodic feedback about how the request is
progressing. Upon acceptance, the action goal’s status is set
to active if there are no other action goals, e.g. motions, wait-
ing for execution. If the action goal is preempted, the robot
does not immediately enter an emergency state and does not
require any restart procedure. The client receives appropriate
result messages in order to handle the preemption in its
scheme and continue with another action if required/possible.
This approach also enables the integration with state machine
frameworks for behavior level programming, such as for
example FlexBE [4], or integration with different motion
planning software stacks such as the widely adopted MoveIt!
[18].

B. Persistent data storage with MongoDB

All ROS nodes within the ROS network can access the
data on the network by subscribing to topics or by reading
from the parameter server. This is meant to either provide
data of the current state of the workcell or some general
parameters that can be used. To carry out a specific task,
the robot has to move through various configurations in its
workspace. The data required to generated these motions
need to be stored as persistent data and read during the
disassembly process. These configurations need to be stored
as persistent data and read during the process. It is also
required that we are able to modify these data as the need
arises, e.g. when the final pose of the robot at one step of
the disassembly process changes.

To meet all these requirements, we decided to store the
motion configuration data in the MongoDB database. We
integrated this database in our ROS software architecture by
using the already existing mongodb store ROS package.6

In our setup, the MongoDB database runs on the ROS
master computer. All the data are saved as named entries
into the MongoDB database. For point-to-point movements,
the initial and final robot configurations are saved, whereas
complex trajectories are saved as parameters of dynamic
movement primitives (DMPs) [15], [16]. It then becomes
possible to define a high-level action sequence that reads
these named entries (single configurations or DMPs) from
the database and moves the robot accordingly. The high-
level disassembly sequences are programmed using FlexBE
(see Section III-C). The poses and trajectories are saved in
the database as ROS messages corresponding to each type of
movement. Having these trajectories saved as named entries
enables quick reconfiguration in terms of changing robot
motion. It is sufficient to overwrite the entry in the database
with a modified motion to update the disassembly sequence
without changing the high-level disassembly sequence pro-
gram.

6https://github.com/strands-project/mongodb_store



Select tool Move to gapGUI
/

FlexBE
behaviors

ROS action
goals

/
FlexBE
states

Robot
controllers

Task level: Remove battery

Reposition 
robot

Remove 
cover

Adapt tool

Execution report
3D sensory data

Start & end pose
constraints

Skill library

Sensory data
Start & end pose

Constraints
Trajectory
generation

Coupled force-
position trajectory

P2P move Apply
force

P2P move

Skill level: Remove cover

Manipulation primitive: Apply force

Desired force-position trajectories
Learnt parameters to skill library 
Proprioceptive to sensory data mapping

Robot controllers - Unified force-impedance control 
- Passivity analysis framework 
- Learning of control parameters 
- Error detection and reporting 

M
o
n
g
o
D

B
 

M
o
n
g
o
D

B
 

Fig. 5. Hierarchical task specification and adaptation in the proposed
system

C. Integration of FlexBE state machine engine

Manually coding a program that sends instructions in a
specific order to all of the components of the cell requires a
deep know-how of both the programming language and the
underlying system. To facilitate this process, we integrated
FlexBE in our workflow. FlexBE is a high-level behavior
engine that supports creating, executing and monitoring com-
plex robot behaviors [4] as state machines. It also provides
a graphical user interface where each state is represented
by a square and the transition between them are represented
by arrows. This provides the user with a graphical interface
to change the state machine sequence by simply adding
or removing states and creating connections between them.
Additionally, states can be grouped into sub-behaviors and
concurrent containers, where the latter provides means to
execute several states in parallel, which can significantly
improve cycle times.

We have created multiple custom-made FlexBE states that
are used to execute robot trajectories, control the peripheral
machinery, manipulate the process data, etc.7 Each FlexBE
state is associated with a service or action server to perform
the following operations:

• Reading from and writing to the skill library (MongoDB
database), e.g. to store data acquired by kinesthetic
teaching and to read data to initialize the desired robot
movements (using mongodb store),

• Controlling and monitoring the execution of robot mo-
tions through Action Servers (c.f. Section III-A),

• Controlling the peripheral equipment, e.g. grippers,
pneumatic vise, etc. using tools presented in Section
II-B, and

• Sensor data acquisition and processing, e.g. vision
pipeline.

7https://github.com/ReconCycle/reconcycle_states

Fig. 6. Bluetooth media controller is mounted on the robot arm to provide
an easy-to-use interface to the Helping Hand GUI.

Using these states, we can develop complex high-level
behaviors while hiding the low-level implementation details
from the user as shown in Fig. 5.

D. Helping Hand GUI for kinesthetic teaching

The definition of robot motions is a difficult and time
consuming process unless proper tools are provided. Pro-
gramming by Demonstration (PbD) provides a methodology
to define robot motions in a natural way rather than by coding
[19]. To capture trajectories, kinesthetic guidance [20], [21]
is commonly used because it enables the demonstration of
tasks directly in the robot’s workspace by physically guiding
it along the desired path, thus avoiding the correspondence
problem typical for PbD.

To integrate kinesthetic teaching into the overall software
infrastructure, we developed a ROS package called Helping
Hand8. The Helping Hand GUI enables the recording of
individual poses or robot configurations as well as the
recording of continuous motion sequences to specify smooth
trajectories. The first functionality is commonly used for fast
calibration of the workcell by guiding the robot to the fixtures
attached to the individual modules that form the workcell
(see Fig. 1). The obtained robot configuration is used to
define the relative transformation from the robot base to the
fixture. This way we can quickly obtain the poses of all
workcell modules in the robot coordinate frame. Afterwards,
all other existing data can be retrieved in any of the calibrated
coordinate frames with the required transformations applied
automatically.

To provide a user-friendly interface for kinesthetic guid-
ance, we equipped the Panda robots with buttons that connect
to a computer via a Bluetooth media button (Fig. 6). A
ROS package9 was developed that reads the button key-press
events and triggers the Helping Hand GUI events described
above via ROS topics.

IV. APPLICATION EXAMPLE

To demonstrate that the proposed framework can be ap-
plied for advanced tasks, we present the implementation

8https://github.com/tgaspar/helping_hand
9https://repo.ijs.si/msimonic/keypress_monitor



Vision detects PCB

Transport to vise
Pry out the inner
part of PCB

Transport the PCB to
the cutting device

Vision detects battery

Transport the battery

Fig. 7. The automatic disassembly workflow for a heat cost allocator

of a disassembly task in the context of electronic waste
recycling, which is still largely dominated by manual labor.
In recycling, the robot needs to deal with many different
products exhibiting different states of damage. Therefore,
robotic workcells for the recycling of electronic devices
need to allow flexible adaptation to be able to successfully
disassemble individual devices.

Using the proposed architecture, we were able to imple-
ment the disassembly of heat cost allocators (HCA). The
main objective of this example disassembly task was to
remove the PCB containing the soldered battery from the
plastic housing and then cut the battery from the extracted
PCB.

We first analysed the disassembly as carried out by a hu-
man operator. This analysis served as the basis for specifying
the automated workflow and the modules of the workcell
to carry out the required operations. The steps are shown
in Fig. 7. We equipped the archetypical modules with a
pneumatic-driven vise and cutter and provided two robot
modules. The other two modules are passive and are used
for tool exchange and as an entry point for devices that need
to be disassembled (see Fig. 1). The integration of these
hardware elements was easy using the tools presented in
Section II-B.

In the current implementation, the first robot starts by
picking up the HCA using qb SoftHand Research gripper
(based on the Pisa/IIT SoftHand [22]) and places it into the
pneumatic vise, which clamps the housing firmly so that
the second robot can use the lever tool to break the PCB
out of the housing. When the PCB is released, the vise
is rotated upside down, allowing the PCB to fall onto the
tray below. When the vise returns to the upwards position,
the tray extends out from underneath it, allowing for the
unobstructed pick-up of PCB in the next step. At the same

time, vise jaws are opened, allowing the first robot to pick
up the empty housing using qb SoftHand and transfer it to
the designated container. After breaking of the PCB from
the plastic housing, the second robot changes its tool. It
leaves the lever tool in the tool storage and takes the vacuum
gripper to pick up the circuit board from the tray and places
it into the cutter. When the battery is cut from the PCB,
the second robot uses the same vacuum tool to pick up the
battery and places it into the container designated for the
removed batteries.

The high-level specification of the disassembly process
was programmed as a FlexBE behavior, while the robot
configurations and trajectories needed to execute the required
robot operations were acquired by kinesthetic teaching, as
described in Section III-D.

The result was a modular workcell with an accompanying
program to disassemble HCAs, which together enable quick
adaptation of both hardware and software to different HCAs.
A video showing the current implementation of the disassem-
bly process is available as an attachment to this paper.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new ROS-based software
stack for flexible robot workcells suitable for agile and self-
adaptable production systems as required by the Industry 4.0
paradigm. By following the modular software and hardware
paradigm, we are able to support both fast development and
deployment of new software and hardware module couples
(developer tasks) as well as fast setup and reconfiguration
of the workcell to prepare specific manufacturing processes
(programmer tasks).

From the developer point of view, the functionalities of
the cell can be expanded without the need to reprogram
any of the software modules that control the existing cell.



Most new modules can be developed by simply defining an
appropriate configuration file for the archetypical module,
where the configuration file specifies the format of ROS
messages that can be received by the module over the ROS
network and how they should be interpreted to control any
auxiliary devices mounted on the module via GPIOs. If an
existing module should be expanded with new capabilities,
this can be achieved by integrating new ROS nodes in Docker
containers, thus avoiding any conflicts with the existing
software in the cell.

From the programmer point of view, the provided soft-
ware toolchains enable fast and efficient programming at all
three levels defined in Fig. 5: control, skills, and behaviors.
New real-time controllers can be developed by exploiting
ros control framework, where the controllers can be
tested in the Gazebo simulation. The programming of new
skills as well as workcell calibration are supported by a user-
friendly interface for kinesthetic guidance. Finally, FlexBE
behavior engine has been integrated into the software stack
to easily specify complex sequences of actions.

While the presented workcell implementation primarily
targets the field of electronic waste recycling, it can also as-
sist the manufacturing industry that targets small production
batches where shifts in demand occur frequently.

ACKNOWLEDGMENT

This work has received funding from the EU’s Horizon
2020 grant ReconCycle (grant agreement no. 871352).

REFERENCES

[1] K.-D. Thoben, S. Wiesner, and T. Wuest, ““Industrie 4.0” and smart
manufacturing – A review of research issues and application exam-
ples,” International Journal of Automation Technology, vol. 11, no. 1,
pp. 4–16, 2017.

[2] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy,
and H. V. Brüssel, “Reconfigurable manufacturing systems,” CIRP
Annals, vol. 48, no. 2, pp. 527–540, 1999.

[3] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots
with ROS: A Practical Introduction to the Robot Operating System.
Sebastopol, CA: O’Rilley Media, 2015.

[4] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot
collaborative high-level control with application to rescue robotics,” in
IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 2016, pp. 2796–2802.

[5] T. Gašpar, M. Deniša, P. Radanovič, B. Ridge, T. R. Savarimuthu,
A. Kramberger, M. Priggemeyer, J. Rossmann, F. Wörgötter,
T. Ivanovska, S. Parizi, Ž. Gosar, I. Kovač, and A. Ude, “Smart hard-
ware integration with advanced robot programming technologies for
efficient reconfiguration of robot workcells,” Robotics and Computer-
Integrated Manufacturing, vol. 66, art. no. 101979, pp. 1–17, 2020.

[6] T. Gašpar, B. Ridge, R. Bevec, M. Bem, Ž. Gosar, I. Kovač, and
A. Ude, “Rapid hardware and software reconfiguration in a robotic
workcell,” in 18th International Conference on Advanced Robotics
(ICAR), Hong Kong, 2017, pp. 229–236.

[7] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour,
“The robot software framework ArmarX,” it - Information Technology,
vol. 57, no. 2, pp. 99–111, 2015.

[8] P. Fitzpatrick, E. Ceseracciu, D. Domenichelli, A. Paikan, G. Metta,
and L. Natale, “A middle way for robotics middleware,” Journal of
Software Engineering for Robotics, vol. 5, no. 2, pp. 42–49, 2014.

[9] T. Gašpar, I. Kovač, and A. Ude, “Optimal layout and reconfiguration
of a fixturing system constructed from passive stewart platforms,”
Journal of Manufacturing Systems, vol. 60, pp. 226–238, 2021.

[10] P. Radanovič, J. Jereb, I. Kovač, and A. Ude, “Design of a modular
robotic workcell platform enabled by plug & produce connectors,”
in 20th International Conference on Advanced Robotics (ICAR),
Ljubljana, Slovenia, 2021.

[11] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep,
A. Rodrı́guez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar,
G. Raiola, M. Lüdtke, and E. Fernández Perdomo, “ros control: A
generic and simple control framework for ROS,” The Journal of Open
Source Software, vol. 2, no. 20, p. 456, 2017.

[12] S. Sidhik, “panda simulator: Gazebo simulator for Franka Emika
Panda robot supporting sim-to-real code transfer,” Apr. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3747459

[13] K. M. Lynch and F. C. Park, Modern Robotics; Mechanics, Planning
and Control. Cambridge University Press, 2017.

[14] K. Shoemake, “Animating rotation with quaternion curves,” SIG-
GRAPH Computer Graphics, vol. 19, no. 3, pp. 245–254, 1985.

[15] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373,
2013.

[16] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in
Cartesian space dynamic movement primitives,” in IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China,
2014, pp. 2997–3004.

[17] L. Koutras and Z. Doulgeri, “A correct formulation for the orientation
dynamic movement primitives for robot control in the Cartesian
space,” in Proc. Conference on Robot Learning (CoRL), Osaka, Japan,
2019, pp. 293–302.

[18] D. Coleman, I. A. Şucan, S. Chitta, and N. Correll, “Reducing the
barrier to entry of complex robotic software: a MoveIt! case study,”
Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 3–16,
2014.

[19] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[20] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion
primitives using the motion refinement tube,” Autonomous Robots,
vol. 31, no. 2-3, pp. 115–131, 2011.

[21] M. Simonič, T. Petrič, A. Ude, and B. Nemec, “Analysis of methods
for incremental policy refinement by kinesthetic guidance,” Journal of
Intelligent & Robotic Systems, vol. 102, art. no. 5, pp. 1–19, 2021.

[22] M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and
A. Bicchi, “Adaptive synergies for the design and control of the
Pisa/IIT SoftHand,” The International Journal of Robotics Research,
vol. 33, no. 5, pp. 768–782, 2014.


