
Probabilistic Detection and Tracking at High Frame Rates Using Affine Warping

Aleš Ude1;2 Christopher G. Atkeson1;3

1ATR, Human Information Science 2Jožef Stefan Institute 3Carnegie Mellon University
Laboratories, Department 3 Dept. of Autom., Biocyb. and Robotics Institute
2-2-2 Hikaridai, Seika-cho Robotics, Jamova 39 5000 Forbes Avenue, Pittsburgh

Soraku-gun, 619-0288, Japan 1000 Ljubljana, Slovenia PA, 15213, USA

Abstract

This paper addresses two vital issues that can affect real-
time operation of a visual tracking system: the realization
of an effective subsampling policy and the real-time initial-
ization of the tracking algorithm. We propose to use affine
warping to subsample the images selectively only in those
regions that contain too much data for real-time operation.
The automatic detection of objects of interest in images cap-
tured by a moving camera is based on random search which
enables us to set all thresholds automatically without any
user support. Using these methods, we implemented a prob-
abilistic tracker that can detect and track up to 10 objects
at 60 Hz on a dual processor 933 MHz Pentium III PC.

1. Introduction

We are interested in interaction between people and hu-
manoids. The ability to observe humans and their actions
using a set of cameras mounted on a humanoid robot’s head
is a necessary prerequisite towards this end [5]. We would
greatly benefit from a system that can detect and track mul-
tiple objects in images acquired from cameras in motion at
high frame (field) rates, e. g. at 60 Hz, which is the highest
rate we can get from a standard, interlaced NTSC camera.

Probabilistic ”blob trackers”, often based on the maxi-
mization of some sort of a likelihood function, have become
increasingly popular in recent years. A number of blob
trackers using various modalities such as color histograms,
Gaussian color mixtures, intensity gradients, depth, optical
flow or a combination of these modalities have been pro-
posed up to now [1, 2, 3, 4, 5, 6]. This paper describes two
techniques that improve real-time operation of such systems
on standard PCs: the selection of an effective subsampling
policy and the real-time detection of objects of interest.

Due to space limitations we only briefly describe the im-
plemented tracking framework in the rest of this section.
The main topics of this paper, i. e. the implementation of
a subsampling policy and the real-time initialization of the
tracking algorithm, are described in Section 2 and 3. This is
followed by experimental results and discussion.

1.1. Probabilistic Framework

We represent the observed environment by a number of
random processes (blobs). Let’s denote the probability that
a pixel located at u having color intensity Iu was gener-
ated by the process �k; k = 1; : : : ;K; by P(Iu;uj�k).
We also introduce two additional processes: the optional
background process �K+1, which describes the stationary
background (useful only for fixed cameras), and the outlier
process �0, which models the data not captured by other
processes. Assuming that every pixel stems from one of the
mutually exclusive processes�k; k = 0; : : : ;K+1, we can
write the probability that color Iu was observed at location
u using the total probability law

P(Iu;uj�) =

K+1X
k=0

!kP(Iu;uj�k); (1)

where !k is a prior probability to observe the process �k,PK+1

k=0 !k = 1, and � = f�0;�1; : : : ;�K+1g. Un-
der these assumptions, the posterior probability that pixel
u stems from the l-th process is given by the Bayes’ rule

pu;l =
!lP(Iu;uj�l)PK+1

k=0 !kP(Iu;uj�k)
: (2)

Ignoring the correlation of assigning neighboring pixels
to processes, the overall probability can be approximated by

P(I) = P(I j�) =
Y
u

P(Iu;uj�): (3)

At each time step, we would like to determine (�1; : : : ;
�K ; !0; !1; : : : ; !K+1) so that likelihood (3) is maximized.
Instead of maximizing criterion (3) directly, it is often easier
to minimize its negative logarithm (log-likelihood).

Before we can minimize the log-likelihood, we must de-
cide how to model the process distributions �k. Our ap-
proach uses shape and color properties to evaluate the prob-
ability that a pixel was generated by one of these processes.
Assuming that these two properties are independent of each
other, we have

P(Iu;uj�l) � p(Iuj�l)p(uj�l): (4)

1051-4651/02 $17.00 (c)  2002 IEEE



In many cases, for example when tracking body parts, the 2-
D shape of the tracked objects is roughly ellipsoidal and can
be approximated by the center of the object’s image xl and
by the covariance matrix �l of pixels contained in it. Thus
the shape part of the probability that pixel u belongs to the
l-th blob can be characterized by a Gaussian distribution

p(uj�l) =
1

2�
p
det(�l)

exp(�
1

2
(x� xl)�

�1

l (x�xl)):

(5)
For the object’s color probability, we assume that it can be
modeled by a Gaussian mixture model

p(Iuj�l) =

KlX
k=1

!l;kp(IujIl;k;�l;k); (6)

where
PKl

k=1 !l;k = 1 and

p(IujIl;k ;�l;k) =
1p

(2�)2 or 3 det(�l;k)
� (7)

exp(�
1

2
(Iu � Il;k)�

�1

l;k (Iu � Il;k)):

The outlier process is modeled by a fixed uniform distribu-
tion and the background colors are modeled by unimodal
Gaussians at each image pixel.

The blob and background colors are kept constant in
the current version of the tracker. They are learnt off-line.
Thus at each tracking step we need to maximize (3) over
shape parameters f(xk;�k)g

K
k=1 and mixture probabilities

f!kg
K+1

k=0 . A good iterative approach is provided by an EM-
algorithm, in which this is done by first calculating the pos-
terior probabilities pu;l (given by Eq. (2), (4), (5), (7))
using the current estimate for f�kg and f!kg (the expec-
tation step) and then estimating the parameters f(xk;�k)g
and f!kg as if pu;l were constants independent of them (the
maximization step). The maximization step consists of cal-
culating the weighted mean and covariances of image pixels
with pu;l being used as weights and of the reestimation of
f!kg. This process is repeated until convergence.

2. Subsampling through Affine Warping

Complex visual routines such as the tracker described
above necessitate a substantial amount of processing at each
image pixel and therefore cannot be applied to whole im-
ages in real-time. Since it is usually not feasible to simplify
the processing at each image pixel without making the re-
sulting tracker less reliable, the alternative approach taken
by many practical tracking systems is to apply techniques
such as windowing, masking and subsampling to reduce the
amount of information that needs to be processed.

To ensure that the processing time needed to process
each of the blobs is approximately the same, it is desirable
to subsample a region around the current blob location to a

window of constant size so that the same number of pixels
needs to be processed for each blob. The problem is that the
size of a blob can change as it moves towards or away from
the camera, making a fixed window size inappropriate.

A common feature of blob trackers such as the ones de-
scribed in [1, 2, 3, 4, 5, 6] and Section 1.1 is that they ap-
proximate the shape of tracked objects by the second or-
der statistics of pixels that are probabilistically classified as
”blob pixels”. By computing the eigenvalue decomposition
of the associated covariance matrices we can estimate the
extent of the blobs along their major and minor axes, i. e.
calculate the location and shape of ellipses enclosing the
blob pixels. As the lengths of both axes can differ signif-
icantly, it makes sense to subsample the image along the
principal blob directions instead of image coordinate axes
and to apply a different scaling factor along each of these
directions considering the length of the corresponding axis.

Subsampling along the principal directions can be im-
plemented by applying the following transformations: (1)
translate the blob so that its center is aligned with the origin
of the image, (2) rotate the blob so that its principal direc-
tions are aligned with the coordinate axes, (3) scale the blob
so that its major and minor axis are shorter than the sides of
a predefined window, (4) translate the blob so that its center
is aligned with the center of the new window. The result-
ing mapping in homogeneous coordinates is given by the
following affine transformation:

A
i
k =

2
4 1 0 w

2

0 1 w
2

0 0 1

3
5
2
6664

w

2aiks
0 0

0
w

2biks
0

0 0 1

3
7775
�
R(�ik)

T
0

0 1

�

2
4 2 0 li � uik

0 1 �vik
0 0 1

3
5 =

2
4 a11 a12 a13

a21 a22 a23
0 0 1

3
5 ; (8)

where ui
k = [uik; v

i
k]
T and �ik are the position and orienta-

tion of the k-th blob at i-th measurement time, aik and bik
are the half lengths of its major and minor axis, w is the
predefined size of the window onto which we map the re-
gion around the blob and s is a scale factor specifying how
much smaller than the target window should the mapped
blob be. This is necessary to ensure that the mapped region
really contains the tracked object because we do not know
the exact blob parameters in the next image field in advance.
The blob parameters (uik; v

i
k; �

i
k; a

i
k; b

i
k) are estimated by a

prediction process. In our system, the prediction of blob pa-
rameters is based on a discrete 2nd order dynamical system

xi = axi�1 + bxi�2 + ei; (9)

where xi is one of (uik; v
i
k; �

i
k; a

i
k; b

i
k) and ei is the system

noise. Factors 2 and li that appear in the last matrix of Eq.
(8) (li is 0 or 1 depending on which field we work with)

1051-4651/02 $17.00 (c)  2002 IEEE



Figure 1. Warping three regions around the tracked
body parts. The original image overlayed with the
estimated blobs (displayed as crosses) is also shown.

account for the fact that we process image fields and not
frames whereas the blob parameters are estimated in a full
frame coordinate system.

If a tracked blob is sufficiently small so that we can as-
sume that at the next measurement time it will stay within
the window of size w centered at ui

k, i. e. if 2 � b
i
k � w=s,

then we do not need to warp the input image but simply
copy the quadratic region of interest onto the target win-
dow. In this way we ensure that we do not scale blobs that
are already small enough to be processed in real-time.

The process of geometrically transforming the input im-
age by the affine mapping given in Eq. (8) is know as affine
warping. Since matrices Ai

k are invertible, we can imple-
ment the affine warping by parsing through the pixels of
the output window, which is often smaller than the region
of interest containing the blob, and by applying the inverse
mappingAi

k
�1 to each of the pixels in this window. We es-

timate the associated color intensities at these positions ei-
ther by a nearest neighbor or linear interpolation. The trans-
formed pixel positions are also stored because our tracker
needs them for the estimation of the next blob position.

Trackers such as the one described in Section 1.1 can
then be applied to the warped images (see Fig. 1). The
expectation phase consists of evaluating conditional prob-
abilities (2) at all pixels of the warped image. Substantial
processing time savings can be achieved in this way with-
out losing accuracy because we reduce the amount of infor-
mation only in those directions in which we have too much
data. The maximization phase can also be carried out effi-
ciently using the pixel values stored when warping the orig-
inal image. Since the size of the warped image is fixed,
we can ensure that the processing time per blob is approxi-
mately constant and thus guarantee the real-time operation
of the system.

2.1. Parallel Processing

To further reduce the computation time, we implemented
a parallel version of the tracker on a dual processor PC us-

ing the multithreading facility provided by Windows 2000
operating system. Our algorithm can be parallelized at dif-
ferent levels, but it quickly turned out that fine level paral-
lelism does not result in processing time savings because of
the incurred overhead. For this reason, we parallelized the
algorithm at a rather coarse level by splitting the blobs in
two groups and starting one thread per blob group.

The denominator of Eq. (2) makes the blobs aware
of each other. This makes it necessary to synchronize
both threads to ensure that all probabilitiesP(Iu;uj�l) are
evaluated before calculating the posterior probabilities pu;l
from Eq. (2). The problem is that these probabilities are
evaluated in the warped spaces and not in the original im-
age space. Thereforewe need to rewarp the calculated prob-
ability maps. The affine mapping that needs to be applied to
warp the probability map of blob �l1 onto the probability
map of blob �l2 is given by Ai

l1
�1 � Ai

l2
. The rewarping

operation needs to be carried out only when the regions of
interest associated with both blobs intersect.

3. Automatic blob detection via random search

Automatic detection of objects of interest and the sub-
sequent initialization of the tracker is a very necessary part
of every practical tracking system. As we are interested in
dynamic scenes captured by cameras in motion, it is neces-
sary that the detection algorithm runs as fast or faster than
the tracking algorithm. It is useless to come up with a result
after a long analysis of one image because the object of in-
terest or cameras might move to a different location before
the processing is finished. In addition, a practical system
should not expect from a user to set various parameters for
different scenes and objects because this is tedious. The
ground knowledge for our system is provided by color and
shape probability distributions. As it is time consuming to
search for ellipsoidal objects in an image, we use color only
as ground knowledge to initialize the tracker.

Based on color, the probability that a pixel belongs to the
l-th blob is given by Eq. (6). Since we do not have any in-
formation about the initial state of the blobs, we randomly
select their shapes and locations in the image. The shape
parameters are varied in a controlled way so that 2-D sizes
of the generated blobs remain within prespecified limits. To
achieve real-time operation, we warp a region of interest
around each of the blobs onto a window of fixed size as
described in Section 2. Color probabilities (6) are then esti-
mated at each pixel of the warped image. If the sum of all
probabilities within the window exceeds a certain threshold,
i. e.

f(�l) =
X
u

p(Iuj�l) > rl; (10)

the region is deemed interesting and the tracker is started
using the associated, randomly selected blob parameters.

1051-4651/02 $17.00 (c)  2002 IEEE



Figure 2. Successful tracking in various situations.

E(f(�l)) max
ti

f(�l)

1.925e-003 1.246e-001

3.956e-004 2.206e-002

5.121e-004 3.229e-002

4.852e-003 5.599e-001

E(f(�l)) max
ti

f(�l)

6.975e-003 1.433e-001

2.329e-005 1.044e-003

1.944e-004 2.162e-002

1.245e-003 2.718e-002

Table 1. Average and maximum sum of color proba-
bilities for 8 blobs over a period of five seconds

It is not possible to select thresholds rl in advance be-
cause they depend on lighting conditions, the variability of
color within the object, and the quality of a color model.
For example, randomly searching through a video stream
for 5 seconds (300 images) while looking for 8 objects of
different colors resulted in the average and maximum prob-
ability sums that are shown in Table 1. Analyzing these
results it becomes clear that we cannot set a single thresh-
old that would account for all possible situations. Therefore
we break the initialization process in two phases. First we
explore the video stream for a sufficient period of time (typ-
ically for 5 seconds) and sample the sums from Eq. (10).
We can then set a threshold for each of the sought objects to

rl = (1� �)E(f(�l)) + �max
ti

f(�l); 0 < � < 1: (11)

� was typically set to 0.67 in our experiments.
In the second phase we restart the random search. The

l-th object is deemed found once the automatically selected
threshold rl is exceeded. If the tracker loses the object, we
restart the initialization process either with the first or with
the second phase depending on the application. Hence our
system is also able to recover from failure.

4. Experimental Results and Discussion

The first four images in the upper row of Fig. 2 show
stereo hand and head tracking from a robot camera in mo-
tion. This output was used to realize the oculomotor be-
havior of smooth pursuit and real-time mimicking of hand

motion. Simultaneous tracking of five objects is presented
in the rightmost image. At 60 Hz, we were able to track in
real-time at most 10 objects on a dual processor Pentium III
PC, with the window size w for affine warping set to 41.

The lower row shows that our tracker works reliably also
under varying illumination. Unlike other approaches, we
used multiple color models taken under various lighting
conditions to solve this problem. The sum of color probabil-
ities from Eq. (10) was used as a criterion to select the color
model that best explains the current situation. Three sepa-
rate color models were used in this example. In this way we
can avoid the pitfalls of on-line adaptation of color models,
although a combination of both, i. e. multiple models and
on-line color adaptation, is probably the best solution. Such
an implementation was made possible by the proposed sub-
sampling policy which enabled us to evaluate a number of
color models at each pixel in real-time.

Acknowledgment: Support for Chris Atkeson was also provided
by US National Science Foundation Award IIS-9711770.

References

[1] C. Bregler. Learning and recognizing human dynamics in
video sequences. In Proc. IEEE Computer Society Conf.
Computer Vision and Pattern Recognition, pp. 569–574, San
Juan, Puerto Rico, 1997.

[2] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of
non-rigid objects using mean shift. In Proc. IEEE Computer
Society Conf. Computer Vision and Pattern Recognition, Vol.
2, pp. 142–149, Hilton Head, South Carolina, 2000.

[3] N. Jojic, M. Turk, and T. S. Huang. Tracking self-occluding
articulated objects in dense disparity maps. In Proc. 7th Int.
Conf. Computer Vision, pp. 123–130, Kerkyra, Greece, 1999.

[4] S. J. McKenna, Y. Raja, and S. Gong. Tracking colour objects
using adaptive mixture models. Image and Vision Computing,
17(3-4):225–231, March 1999.

[5] A. Ude, T. Shibata, and C. G. Atkeson. Real-time visual sys-
tem for interaction with a humanoid robot. Robotics and Au-
tonomous Systems, 37(2-3):115–125, November 2001.

[6] Y. Wu and T. S. Huang. A co-inference approach to robust
visual tracking. In Proc. Eight Int. Conf. Computer Vision,
Vol. II, pp. 26–33, Vancouver, Canada, 2001.

1051-4651/02 $17.00 (c)  2002 IEEE


	ICPR 2002
	Return to Menu


