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Abstract

The formulation and optimization of joint trajectories
for humanoid robots is quite different from this same task
for standard robots because of the complexity of the hu-
manoid robots’ kinematics. In this paper we exploit the
similarity between the movements of a humanoid robot and
human movements to generate joint trajectories for such
robots. In particular, we show how to transform human
motion information captured by an optical tracking device
into a high dimensional trajectory of a humanoid robot. We
utilize B-spline wavelets to efficiently represent the joint
trajectories and to automatically select the density of the
basis functions on the time axis. We applied our method to
the task of teaching a humanoid robot how to make a dance
movement.

1 Introduction

Movements of most of the current robot manipulators
can be described by a single open kinematic chain. A stan-
dard approach to the specification of movement tasks for
such robots is to define a trajectory for the motion of a
robot tip. Further constraints are necessary in the case of
redundant mechanisms. The specification of a movement
task involving the full-body motion of a humanoid robot
(Fig. 1) is much more complicated because the underlying
kinematic structure of the humanoid robot is more com-
plex. Indeed, a humanoid robot possesses 5 tips: the head,
the two hands and the two feet. The motions of its tips are
not independent, but are coupled through the robot linkage.
Therefore we cannot directly specify a full-body motion by
independently specifying the trajectories of these tips. In
addition, taken as a whole the humanoid robot’s kinematic
structure is redundant.

Our humanoid robot DB consists of 15 rigid parts di-
vided into 6 interconnected kinematic chains: the head; the
upper arms, lower arms, and hands; the lower and the up-
per torso; and the upper legs, lower legs and feet. The tra-

Figure 1: Humanoid robot called DB in our laboratory

jectories of joints connecting these body parts define the
complete motion of the robot as the robot pelvis is fixed in
space. DB has 26 degrees of freedom (plus four degrees
of freedom for the eyes’ movements which are not con-
sidered in this paper). The dependencies between trajecto-
ries of different body parts are defined by DB’s geometric
structure. It is thus more appropriate to represent full-body
motion trajectories in terms of independent variables, e. g.
joint angles, because joint space trajectories automatically
conform to the geometric constraints.

There is not much hope of finding a closed form tra-
jectory for full-body motions such as dancing. There-
fore we exploit the similarities between humanoid robots
and humans to generate appropriate trajectories. We are
also taking advantage of the nature of the tasks humanoid
robots are asked to perform, which typically involve mak-
ing human-like motion. We started our investigation with
motion capture techniques from the entertainment indus-
try and computer graphics [1], and also borrowed tech-



niques from robot teleoperation, robot programming by di-
rect teaching or showing [5], and virtual reality. We found
that the requirements to actually control a physical device
required modifications of techniques from the virtual and
entertainment applications, and that we could take advan-
tage of the offline nature of our task to more effectively
process the teaching data and handle less cumbersome mo-
tion capture devices. In this paper we capture full body
motions of a human performer using an optical tracking
device, which provides the 3D location of identified active
markers which are currently in view. We have also experi-
mented with goniometer devices strapped to the performer,
and magnetic systems that provide marker orientation as
well as location. The techniques presented in this paper can
be easily extended to all of these different types of motion
capture systems. We are also currently extending our tech-
niques to vision systems where there are no markers, but
individual pixels must be matched or accounted for [10].

To relate human motion to robot motion, we model
the kinematics of the performer using a similar kinematic
model as the robot’s, but scaled to the performer. The per-
former’s kinematic model should contain at least those de-
grees of freedom which are relevant for the desired move-
ment task. Sometimes it is advantageous to augment the
performer’s kinematic model by additional degrees of free-
dom to facilitate the measurement process. This approach
can of course work only for a humanoid robot having a
kinematic structure similar to a human.

2 Setting up the criterion function

The placement of a human body in Cartesian space is
determined by the position and orientation of a global body
coordinate system rigidly attached to one of the body parts
and by the values of the joint angles. We use twist coordi-
nates [6] to model the performer’s and DB’s kinematics. If
the coordinates of a marker in a local coordinate system of a
rigid body part to which it is attached are given by ��� , then
its 3-D position at body configuration � ��� ��� � 	 � 
 
 
 � � � � can
be calculated as follows� ����� � ��� ��� � � � ��� � � � � � � � � 
 
 
 � � � ��� � � � � � � � � � � � � � � ���� � � ��� ��� � 	 � 
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 (1)

Here � � � is the function mapping twists � � representing the
body kinematics into rigid body transformations, � � is the
homogeneous matrix combining the position and orienta-
tion of the local body part coordinate system to which the
marker is attached with respect to the global body coordi-
nate system at zero configuration, � and � are the orienta-
tion 1 and position of a global body coordinate system with

1We use rotation vectors to represent the orientation.

respect to the world coordinate system, and � � ��� ��� denotes
the homogeneous matrix corresponding to � and � . Note
that the set of twists affecting the motion of a body point
varies according to the identity of the body part to which
the marker is attached.

Our trajectory planning method should generate mo-
tions which are perceptually similar to the motion of the
performer. This can be achieved by recovering joint angles
that results in marker positions close to the measurements.
Thus we should favor configurations minimizing !� " 	 # � � � ��� $ % � � ��� $ % � � � 	 � $ % � � 
 
 
 � � ��� $ % � ��&'��(� � $ % � # ) �

(2)
where � (� � $ % � denotes the measured markers at time $ % .

A straightforward approach to the generation of motion
trajectories is to sequentially minimize criterion (2) at each
measurement time. A continuous trajectory can be gener-
ated afterwards by interpolating the recovered joints. This
approach has, however, several deficiencies. First of all,
optical motion capture systems often cannot recover the po-
sitions of all markers due to occlusions. This can result in
underconstrained linear systems causing the optimization
process to break down. Moreover, experiments showed that
even when the positions of all markers can be recovered,
the optimization process can still break down because of
the singularities in the kinematic model. Finally, just mov-
ing like the human is not the only criterion relevant for the
robot motion.

The optimization process can be made more reliable
by recovering the complete trajectory instead of single
configurations and by the regularization of the objective
function (2). Writing the full-body trajectory as *+� $ � �� ��� $ � � ��� $ � � � 	 � $ � � 
 
 
 � � �,� $ � � , we look for a function that
minimizes

- � *�� �/.0 1!% " 	
 !� " 	 # � � � *+� $ % � ��&2��(� � $ % � # ) � (3)

over all possible trajectories. The regularization can be
achieved by minimizing the amplitude of physical quan-
tities such as acceleration (2nd derivative) or jerk (3rd
derivative)

3 � *�� �/.054 	6 # *�7 8+9 � $ � # ) : $ ��; � 0=< >�? 
 (4)

We always normalize the time of our trajectory to 1. In gen-
eral we could penalize any weighted combination of kine-
matic variables such as acceleration, jerk, and violation of
joint space or Cartesian soft limits. Because we have the
full trajectory available and can analytically compute ve-
locities and accelerations (for spline based trajectory rep-
resentations), we could use inverse dynamics to compute



torques or actuator commands from a physically feasible
trajectory, and use the computed values to penalize any
function of torque or actuator commands such as squared
torque magnitude or actuator energy dissipation.

The trajectory planning problem thus becomes

��� �* � - � *������ 3 � *�� 	�� (5)

where � is the parameter governing the tradeoff between
the two objective functions. Apart from the above men-
tioned computational issues, it is advantageous to generate
smooth trajectories also in order to reduce the wear and
tear of the mechanical system, avoid exciting higher order
dynamics, and because real actuators often have limits on
their torque output or on the rate of change of output. Fur-
thermore, jerky motions do not look natural which is dis-
tracting for movement tasks like dancing.

3 Trajectory Generation

Since parametric forms of complex body movements are
normally not known, we applied the finite element method
to represent the trajectory. In particular, we could use B-
splines that were used before for the generation of joint
trajectories of industrial robots [9] as basis functions. Un-
fortunately, an optimal set of fixed B-splines often cannot
be determined in advance. If there are not enough basis
functions, the generated motion may be far from the de-
sired motion. If there are too many basis functions, the
computational complexity is increased unnecessarily due
to the larger number of variables as well as the resulting
ill-conditioning of the linear subproblems that arise in the
optimization process. A solution is to use a wavelet basis,
in which the trajectory is represented hierarchically [4, 8],
instead of a B-spline basis.

3.1 B-Spline Wavelets

Let 
 � � ;'� be the set of
0 � � ; endpoint-interpolating

B-splines of degree ; constructed from knot sequence

.0 ���  � 
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Linear spaces spanned by these splines are nested, i. e.

� � 
 6 � ;'� ��� � � 
 	 � ;'� ��� � � 
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 � (7)

where
� � �2� denotes the linear space spanned by mem-

bers of � . Each orthogonal complement of
� � 
 � � ; � �

in
� � 
 � � 	 � ;'� � is called a wavelet space and its basis

is denoted by  � � ;'� . The members of  � � ; � are
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Figure 2: A typical B-spline and a typical wavelet

called semiorthogonal wavelets because they are orthog-
onal only to B-splines but not to each other. By defini-
tion

� �  � � ; � �!� � � 
 � � 	 � ;'� � , thus wavelets are piece-
wise polynomials of the same degree as the underlying B-
splines. A desirable property for wavelets is to have small
support. Let " � � and # �� be members of 
 � � ; � and  � � ;'� ,
respectively. Since

� � 
 � � ;'� � and
� �  � � ; � � are subsets

of
� � 
 � � 	 � ; � � , we can write

" � � � ! % $ � � % " � � 	% �%# �� � ! % & �� % " � � 	% 
 (8)

A construction for semiorthogonal wavelets with the small-
est number of consecutive nonzero & �� % is given in [8]. Note
that the same property is true for B-splines, hence matrices' � � � $ � � % 	 and ( � � � & �� % 	 are banded. We relate the
reader to [8] for the explicit formulae for ( � and

' �
. A

typical B-spline and a typical wavelet are shown in Fig. 2.
The multiresolution finite element approach assumes

that the optimal trajectory can be written as a linear combi-
nation of B-spline wavelets:

* � ! � ) � "�*� �
! � ! � + � � # �� 
 (9)

Here B-splines " *� are fixed at the lowest possible resolu-
tion , , while the optimal set of wavelets # �� ��,.-0/1-.2 ,
should be determined automatically by the optimization
procedure. By definition B-spline wavelets # �� have unit
norm. This forces their amplitude to become higher and
higher to retain the unit norm as they become narrower and
narrower. Since this is counterproductive for optimization
[4], we replaced # �� with

0 *�3 � # �� to obtain proper scaling.

3.2 Large-Scale Optimization

By replacing * in the optimization problem (5) with the
above linear combination of B-splines and wavelets, which
are fixed in this section, we obtain a classic unconstrained
optimization problem. Instead of minimizing over all func-
tions from some function space, we can minimize over pa-
rameters

) � � + � � . Note, however, that the number of un-
known parameters is very high. The full-body motion of



DB involves 26 joints plus 6 degrees of freedom for the dis-
placement in space. If we fix the highest resolution space
of piecewise polynomials to 
�� � ? � , there are altogether

� �
basis functions. Thus in this case the highest possible num-
ber of variables is

� ����? 0 � 0 . � � which clearly makes our
optimization problem large. The highest resolution used in
our experiments was eight which results in over 4000 un-
known variables.

Trust region methods are suitable for solving large-scale
optimization problems [2]. Let � and � respectively be the
Hessian and the gradient of the objective function (5) at the
current estimate for unknown variables � � � ) � � + � � � . The
main idea of the trust region approach is to approximate the
criterion function with a quadratic function in the neighbor-
hood around the current estimate. The next approximation
is thus computed by minimizing

� � �� 	 .0 ��
��� ����
 ��� ��� ��� ��� � # � � # -���� � (10)

where
�

is a diagonal scaling matrix and � is a positive
scalar setting the size of the neighborhood.

The trust region approach assumes that the gradient and
the Hessian of the criterion function can be calculated. Let
us define� � ��� ������ � 	  ! � ) � " *� � $ 	 � �"! � ! � + � � # �� � $ 	 � # &5� (	 � $ 	 �

...�   ! � ) � " *� � $ 1 � �"! � ! � + � � # �� � $ 1 � # & � ( � $ 1 �
$ %%%& 

(11)

Comparing (11) with the objective function (3) we note that- � *�� � 	) # � � ��� # ) . Let ' be the Jacobian of � at the cur-
rent estimate. It is easy to verify that the gradient of - is
equal to ' 
 � � ��� while the Hessian of - is given by ' 
 ' �
second order terms. It is a common practise in nonlinear
least squares problems to neglect the second order terms,
which are expensive to calculate, and to approximate the
Hessian by ' 
 ' .

The calculation of the gradient and the Hessian of the
criterion function (4) involves the calculation of inner prod-
ucts of derivatives of basis functions( 	6 " 7 8 9� " 7 8 9� : $ � ( 	6 " 7 8+9� # 7 8+9� : $ � ( 	6 # 7 8+9� # 7 8+9� : $ 

Let ) be the matrix of these inner products. It is easy to
see that (4) can be rewritten as 3 � *�� � 	) � 
 )�� . Thus the
gradient of the objective function 3 is given by )�� and its
Hessian is simply equal to ) . Note that ) is independent of� , thus it should be calculated only once at the beginning
of the optimization process. We employed the Gaussian
quadrature formulae, which are exact for polynomials up
to a certain degree, to evaluate these integrals exactly.
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Figure 3: Sparsity pattern
of the kinematics Jacobian
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Figure 4: Sparsity pattern of
the Hessian ' 
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The row dimension of ' is even larger than its column
dimension, hence its calculation should be designed with
care. The bulk of the computing time for the calculation of' is spent on the calculation of the Jacobian of the kine-
matic model for the human body motion at all measure-
ment times. Due to the structure of our model, the kine-
matics Jacobian is sparse (see Fig. 3). Moreover, due to
the minimal support property of B-splines and wavelets, ' ,' 
 ' , ) and the resulting combined Hessian ' 
 ' � ��)
are also sparse (see Fig. 4). In the example in Fig. 4, all
B-splines and all wavelets at a particular resolution level
were included in the calculation. The sparsity pattern is a
bit more complicated when only some of the wavelets from
different resolution levels are used (each resolution level
contributes one large block in the Hessian), but the result-
ing matrices are nevertheless sparse.

We showed that the gradient and the Hessian of the com-
bined criterion function (5) can be estimated as

� � ' 
 � � ���%����)*� ���,+-' 
 '0�0��) 
 (12)

Thus the next estimate for our trajectory can be computed
by solving the trust region subproblem (10). However,
standard algorithms for solving (10) are not appropriate for
large-scale problems because they require the computation
of a full eigensystem [2]. This is resolved in large-scale op-
timization approaches by restricting the solution space to a
two-dimensional subspace spanned by the direction of the
gradient and the direction of the negative curvature. The
calculation of the next approximation is then trivial. Fi-
nally, the trust radius � is adjusted to a new value. We were
able to use the MATLAB Optimization Toolbox implemen-
tation of a trust region method for large scale optimization
problems and the sparse matrix capabilities of MATLAB
for the resolution of sparse linear systems. Therefore we
relate the reader to [2] and the references therein for fur-
ther information.



3.3 Detecting the Optimal Resolution

Criteria similar to the ones proposed in [4] for varia-
tional geometric modeling were applied to choose the op-
timal resolution: add more wavelets to better approximate
the trajectory and remove the unneeded wavelets to obtain a
solution with lower energy (defined by the objective func-
tion (4)). While the first principle can be realized using
hierarchical B-splines, the second criterion is much easier
to realize in a wavelet basis because the necessary density
is reflected in the magnitude of wavelet coefficients.

After calculating the estimate for a trajectory at a certain
resolution, we first check the magnitude of wavelet coeffi-
cients. If they are below a certain threshold, we remove
the corresponding wavelets from the trajectory. The next
step is the addition of higher resolution wavelets on time
intervals where the model marker positions generated by
the recovered trajectory poorly match the measured mark-
ers. Wavelets centered on such intervals are added to the
solution and their initial coefficients are set to zero. This
procedure is repeated until a stable solution is found.

4 Experiments and Discussion

We captured several motion trajectories involving
full-body motion of a human performer. A marker-
based measurement system Optotrak (see web page
http://www.ndigital.com/opto.html) was used for this pur-
pose. Optotrak uses identifiable active markers which is ad-
vantageous because full-body movements often cause some
of the markers to be occluded. Systems using passive mark-
ers are more prone to matching errors in such cases. In our
experiments, we used 22 markers distributed over the per-
former’s body.

Experiments showed that our approach offers significant
advantages compared to a straightforward approach of se-
quentially minimizing the criterion function (2) at consec-
utive measurement times. Firstly, the sequential minimiza-
tion requires that a sufficient number of markers is visible
at each measurement time. This can make the optimization
process fail when too many of them are occluded. In the
sequential approach, we were able to recover part of the
trajectory only by interpolating the marker positions from
the times when they were not occluded to the intervals of
occlusion. This reduces the quality of the recovered trajec-
tory. These problems were alleviated by the batch recov-
ery of a complete trajectory. Secondly, it turned out that
even when the positions of all markers can be measured,
the recovery of some of the joint angles becomes sensi-
tive at some configurations due to the kinematic structure
of the body as well as the choice of the marker placement
on the body. Indeed, we were unable to estimate the torso
degrees of freedom and some of the degrees of freedom at
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Figure 5: Trajectory of the right arm flexion/extension

the performer’s hand using the sequential approach. These
problems were resolved in the proposed approach with the
introduction of the regularization factor (4) in the optimiza-
tion criterion. Thirdly, the recovered trajectory is smooth
and can avoid discontinuities that can arise in the sequen-
tial approach because of the switching between local min-
ima of the objective function.

Our trajectories are high dimensional (over 30 degrees
of freedom), so due to space limitations we are unable to
present all of their components. Some of the above find-
ings are nicely demonstrated on the recovery of the right
shoulder flexion/extension degree of freedom (see Fig. 5).
The motion capture process lasted a bit more than 5 sec-
onds and we took 60 measurements per second. The blue
trajectory shows the trajectory recovered by the sequential
approach. It is more noisy than the other two trajectories
and it contains discontinuities. The green trajectory shows
the recovered trajectory using an initial cubic B-spline ba-
sis (third resolution level, 11 basis functions). While it is
less noisy than the trajectory generated by the sequential
approach and it does not contain discontinuities, it only
poorly follows the measured markers. The red trajectory
shows our final result after adding some wavelet functions.
It is both smooth and continuous and it follows the mea-
sured markers better. The average error between the mea-
sured and the estimated marker positions, i. e. the square
root of criterion (2) divided by the number of markers, for
the last two trajectories is shown in Fig. 6 (dashed: initial
B-spline trajectory, solid: final trajectory). We should note
here that a significant part of these errors is caused by sys-
tematic errors due to inaccuracies in our model. If these
errors are larger than the predefined tolerance for the mea-
surement error, then the wavelet adding process should stop
supplying new wavelets. Currently, this is done by limiting
the upper resolution level.

Our models are built by measuring the performer and
the positions of markers attached to her/him. Work on au-
tomatic model generation, which should make the model
building process more accurate and less cumbersome, is
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Figure 6: The average error in marker positions

currently under way. Another problem is the mismatch be-
tween human and robot. Especially, DB’s joint limits are
more restrictive than human’s. In this work we handled this
problem by scaling and translating the reconstructed joint
trajectories into the range of DB’s joint limits. The regular-
ization term in (5) was used to prevent jumps in velocities
and accelerations and thus ensure the generation of motions
that can be executed by the robot. This makes robot motion
planning different from programming a virtual movie actor
or interactive game agent that need only approximate rather
than follow real-world physics. See [3] for a computer
graphics approach to motion adaptation. Another extension
would be the development of a cross-validatory procedure
for the automatic determination of the smoothing parame-
ter in criterion (5), as it is standard in biomechanics [12].

A possible field for further research is the development
of criterion functions that improve the style of motion [11]
and can be added to the objective function (5). Although
the objective function (4) does improve the style of motion
by reducing its acceleration or jerk, its primary function is
to make the trajectory feasible to execute. Our scheme is
suitable for the generation of a library of movement primi-
tives. Techniques for an on-line interpolation between such
primitives based on perceptual inputs should be developed
in the future. Another interesting area of research would
be to develop control strategies to combine the learned
primitives into longer movement tasks [7]. The humanoid
robotics is an attractive test case for such research.

5 Summary and Conclusions

This paper presents a new approach to the formulation
and optimization of joint trajectories for humanoid robots
using B-spline wavelets. We first outlined the difficulties
arising in the specification of full-body motions for hu-
manoid robots and proposed to exploit the similarity be-
tween human and humanoid robot motions to generate such
trajectories. We demonstrated that B-spline wavelets are
suitable for the formulation and optimization of humanoid

robots’ trajectories at different resolution levels. Finally,
we showed how to resolve the resulting large-scale opti-
mization problems to compute such trajectories. The abil-
ity to treat large-scale optimization problems that need to
be solved to generate optimal full-body motions and to
automatically infer the appropriate resolution level draws
a distinction between our approach and other approaches
proposed for human motion capture in the literature.

Videos showing our humanoid robot performing some
dance movements can be seen on DB’s home page
http://www.erato.atr.co.jp/DB/home.html.
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