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human movement as a rich source of non-verbal infor-
mation, and a powerful tool which we can exploit to
learn new skills. She uses primitives to describe move-
ment, and tests her method in a humanoid simulation.

In [2] Breazeal and Scassellati discuss social interac-
tion and skill transfer, including imitation as an e�ec-
tive means for humanoids to acquire new skills. Dif-
�cult challenges such as having the humanoid know
what to imitate and how to evaluate success are also
identi�ed. They show an active vision system for an
upper-torso robot, Cog, and an expressive head and
face robot, Kismet.

Bakker and Kuniyoshi [1] navigate the terminology
and o�er a clear de�nition of imitation which we adopt
here: imitation is an agent learning a behavior from
observing a teacher executing that behavior. They
also describe a 3-part framework to enable imitation:
observe the action, represent the action, and repro-
duce it. They point out that a non-trivial mapping
is necessary to make a correspondence between ob-
served action and the execution of a similar action by
the robot. Inverse kinematics plays a key role in this
mapping. Our implementation is compatible with the
framework of Bakker and Kuniyoshi. We observe with
3D vision. To represent what we perceive, we rely on
a model of human kinematics to help us solve the in-
verse kinematics problem for the observed postures.
We use this joint angles representation to achieve a
similar posture on the robot.

In much previous work, o�-line methods are used to
reproduce motion for a humanoid robot. In [12] Ude
estimates human motion from video using a kinematic
model of the human skeleton. The work is interesting,
although to-date not achievable in real-time. In our
earlier work [9], we reproduce Okinawan folk dance for
a humanoid robot with o�-line methods starting with
motion capture data. We were concerned with scaling
the recovered motion for the robot's joint ranges to
preserve the style of the motion. In [8] Pollard et al.
further explore methods to scale human motion to a
humanoid robot while maintaining the individual style
of the performer in the �nal motion.

Cheng and Kuniyoshi [3] use 2D vision with a simple
body model to implement real-time humanoid robot
imitation where perceived head and arm motion is
mapped directly to speci�c motor outputs in the robot
head, neck, torso, and arms. Their decision to use a
simple model and 2D vision means that more assump-
tions must be made in the mapping function from per-
son to robot. Also, representing motion with motor
velocities is not as intuitive as joint angles. However,

their solution is elegant in that it requires no special
markers and is part of an integrated system that can
detect the person entering the room and then begin
imitation.

Much early work in robotics centered on solutions
for robotic arms, thus making end-e�ector-driven in-
verse kinematics an important problem. Closed-form
solutions were particularly emphasized for industrial
robots. More recent end-e�ector work also includes
numerical solutions. Tevatia and Schaal [11] discuss
and compare the relationship between the pseudo in-
verse with explicit optimization and the extended Ja-
cobian methods for the 30-degree-of-freedom (DOF)
robot at ATR.

Ude and Atkeson [13] recently describe a system which
tracks either a person's face or hand. The motion of
the face or hand is then translated to desired end-
e�ector coordinates of the robot's right hand, and
the resulting movement is produced by using end-
e�ector inverse kinematics as described in Tevatia and
Schaal [11]. This work requires no special color mark-
ers and presents a fast, probablistic framework for vi-
sion with �ltering for noise reduction, but the imita-
tive behavior is limited. Only a simple translation of
the perceived movement of hand or face is mapped to
the end-e�ector position.

In the graphics community, Zhao and Badler [14] for-
mulated inverse kinematics as a constrained non-linear
optimization problem taking into account a sequential
de�nition of constraints to reconcile the joint chains.
End-e�ector position is still important, but they es-
tablished that numerical solutions are robust enough
to handle non-trivial inverse kinematics problems for
complex humanoids, and can achieve su�cient perfor-
mance for interactive systems.

In Hodgins et al. [4] o�-line physical simulation is used
to �nd physically-plausible movement solutions for hu-
manoid athletes. This work is novel in that dynamics
as well as kinematics are taken into account to achieve
more realistic solutions for graphical characters.

Shin et al. [10] animate graphical characters for a tele-
vision show by tracking a person's movements in real-
time. They begin with magnetic marker positions and
orientations, and solve the inverse kinematics problem
in three stages while varying the importance of the
end-e�ector position in the solution. Our approach is
similar in that we also sub-divide the IK problem to
maximize performance. However, vision data restricts
us to position data only to begin the motion recovery
for a physical system.
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or more color patc hes on the body at 60 Hz (see
Fig.2). The system starts a number of threads deal-
ing with frame/�eld grabbing, probability calculation,
and stereo processing. T echniquessuch as masking,
windowing, and w arpingwere used to speed up pro-
cessing. The use of wide angles lenses for the robot
eyes ensured that the human instructor stays within
the view �eld of the robot even while the robot moves.
How ever, wide angle lenses also introduce signi�cant
distortion into our images that need to be dealt with
to make the results of stereo triangulation usable. The
noise was further reduced using a Kalman �lter based
on a random jerk kinematic model [13].

3.2 Inverse Kinematics

We solve for the teacher's full-body postures in real-
time by breaking the IK problem in to simpler sub-
problems. First we solve the world position and orien-
tation of the teacher relative to the model's coordinate
system using an analytic mapping betw eentriangles
on the model and the teacher. We then employ an
iterative numerical solution to hierarchically solve for
the join tangles describing the current body con�gu-
ration.

Our numerical solution uses twist coordinates to
model the kinematics [6]. For a rev olute joint, the
twist has the form

�i =

�
�ni � qi

ni

�
; (1)

where ni is the unit vector in the direction of the joint
axis and qi is any point on the axis, both given in a
global body coordinate system. See [6] for mathemat-
ical details.

A patc h position in aglobal body coordinate system
is given by Y j . Its 3-D position at body con�guration
(R;d; �1; : : : ; �n) can be calculated as follows

~Y j = g(R;d) � exp(�i1�i1) � : : : � exp(�inj �inj
) � Y j

= Hj(R;d; �1; : : : ; �n): (2)

Here exp is the function mapping twists �i represent-
ing the body kinematics into rigid body transforma-
tions, R and d are the orien tation and position of
a body coordinate system with respect to the world
coordinate system, and g(R;d) denotes the homoge-
neous matrix corresponding to R and d. Note that
the set of t wists a�ecting the motion of a patch varies
according to the identity of the body part to which the

patc h is attached. Here our world coordinate system
is the model coordinate system.

For our purposes, g(R;d) are derived analytically and
immediately applied to the patch positions. Thus our
system simpli�es to:

~yj = hj(�1; : : : ; �n): (3)

Where ~yj (and yj below) are expressed in world co-
ordinates.

T o attain a close match betw een the observed and esti-
mated joint angles, we wish to minimize the di�erence
betw eenthe measured patc hpositions and the posi-
tions estimated by the recovered joint angles for each
frame of motion:

1

2

PN

j=1 khj(�1(tk); : : : ; �n(tk))� yj(tk)k
2

= 1

2
kh(�1(tk); : : : ; �n(tk))� y(tk)k

2;
(4)

where yj(tk) denotes the j-th measured patch at time

tk expressed in world coordinates, h = [hT
1
; : : : ;hTN ]

T

and y(tk) = [y
1
(tk)

T ; : : : ;yN (tk)
T ]T .

Here �i(tk) denotes the current estimate for the
teacher's joint angles. This resulted in the following
overconstrained system of linear equations that must
be solved at each iteration step

J � [��1; : : : ;��n]
T =

y(tk)� h(�1(tk); : : : ; �n(tk));
(5)

where J is the Jacobian of h at (�1(tk); : : : ; �n(tk)).

The complexity of the Jacobian is reduced by using an
analytic solution for the world position and orienta-
tion, thus removing it from the optimization problem.
Also, the numerical solution is solved hierarc hically ,
exploiting the dependencies of the body geometry to
reduce the amount of work needed to �nd a good so-
lution. F or example, the torso DOFs are found �rst,
and this partial solution is then used in solving for
the arm and head DOFs. Both of these factors sig-
ni�cantly improve the speed of the IK solution, as
compared with our earlier w ork[9], in which all pa-
rameters including joint angles and world position and
orientation were found simultaneously by solving one
optimization problem.

3.3 Results and Robustness

We tested the above methods on a 30-DOF humanoid
robot tracking 6 color patches with external cameras
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Test Condition L Arm
FE

L Arm
AA

R Arm
FE

R Arm
AA

R Elbow
FE

Torso
Rot

Torso
AA

Torso
FE

Model Noise 1 0.470� 0.211� 1.25� 0.792� 1.93� 0.070� 0.026� 0.099�

Noise Noise 2 0.495� 0.361� 3.29� 0.158� 2.88� 0.024� 0.011� 0.011�

Vision Noise 1 0.718� 0.423� 1.05� 0.464� 2.90� 0.205� 0.161� 0.110�

Noise Noise 2 0.735� 0.780� 4.32� 1.10� 8.97� 0.231� 0.118� 0.144�

Both Noise 1 0.878� 1.39� 2.34� 1.45� 5.59� 0.760� 0.517� 0.274�

Noise 2 0.906� 1.36� 4.84� 1.06� 11.68� 0.653� 0.451� 0.416�

Table 1: Mean absolute errors of joint angles recovered from simulation (AA = abduction/aduction, FE =
exion/extension, Rot = Rotation).

(Fig.3, �rst row), and 7 color patches with the head-
mounted cameras (Fig.3, second row). In both cases
we ran several sessions which lasted about 3 minutes
each, and solved for 7 DOFs with vision data supplied
at 60 Hz. Sessions were ended by the teacher, and
can be extended for longer periods. The numerical
solution used to �nd the joint angles converged in an
average of 3.7 iterations per frame. This plus the fast
analytic step to �nd the teacher-model correspondence
accounts for the total solution per frame.

Our method makes the assumption that the last solu-
tion is a good place to start to solve the next frame.
This assumption remains true only if the motion ve-
locities are not too large with respect to our tracking
frequency. To ensure this is true, we use a movement
threshold m as follows:

m =

vuut NX
i=1

d�2i (6)

where d�i is the change in joint angle for a degree of
freedom since the previous vision frame, and is set to
10 degrees for all N degrees of freedom used in the
current solution. Movement exceeding this is consid-
ered too fast for the robot to track. In this case the
robot signals the teacher it is lost in one of 2 ways: the
robot stays in the last known position waiting for the
human to re-direct behavior from that point, or the
robot returns to its initial zero con�guration, stand-
ing with arms and legs straight, and again waits for
the human to start from this point. As the human
goes to that point, the robot begins tracking again.
In our tests this worked well. We believe this to be a
natural way to signal a teacher that she is going too
fast, as people also stop when they get lost tracking a
teacher in settings such as exercise and dance classes.

If the movement threshold is not exceeded for a partic-
ular iteration, the robot immediately moves to imitate

the joint angles, setting desired joint velocities and ac-
celerations by �nite di�erencing. This con�guration is
then used as the initial solution for the next iteration.

Although our method has limitations inherent to nu-
merical methods, that is, we are not guaranteed con-
vergence if the step size between subsequent frames is
too large, even in analytic solutions the velocity may
exceed the robot's capabilities. In either case, we must
check for excessive movement velocity, and signal the
teacher to slow down.

Presently, we are working on ways to extend our 3D
vision tracking beyond 7 patches. In the meantime, we
tested our method for higher numbers of DOFs by us-
ing simulated vision data. In one experiment, we used
31 patches to recover all 32 DOFs in our model. 26
DOFs representing body joint angles were found by
the numerical method described in Section 3.2, and
converged with an average of 3.9 iterations per frame
with an error threshold of 0.01 radians. Our previous
method where one optimization problem was used to
solve for all DOFs took an average of 25 iterations to
solve for 25 DOFs (19 joint angles and 6 DOFs de-
scribing the world position and orientation) for the
same error threshold. The simulated vision data had
no noise, and was compared with data from an Opto-
trak, a more accurate optical motion capture system.

The accuracy of the recovered joint angles depends
primarily on model geometry and vision accuracy. To
test how these errors a�ect our method, we use simu-
lated data as follows. We create a trajectory of joint
angles for 8 DOFs and use it to generate seven 3D
points (or patches) placed on a 3D humanoid body.
The trajectory has 147 frames of data.

In the �rst test, we change the rigid body representing
the teacher by adding random noise to the initial patch
positions. This same noise is then added to each frame
of data (Test 1), creating an inexact match between
the teacher and model geometry. In the next test, we
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Figure 3: The top row shows the robot using external cameras to imitate from 6 color patches. Frames are 1.33
seconds apart. In the bottom row the robot uses head-mounted cameras to imitate from 7 color patches. Frames
are 0.33 seconds apart.

simulate noisy vision data by adding di�erent random
amounts of noise to each position in each frame (Test
2). Finally, we combine the �rst two tests by adding
di�erent amounts of noise to each point of each modi-
�ed frame created in test 1, simulating both a di�erent
teacher geometry and noisy vision data (Test 3).

All three tests are run under two conditions: the �rst
condition corresponds to added noise ranging from 0 to
1.6 centimeters in each position dimension; the second
condition corresponds to added noise ranging from 0
to 2.4 centimeters. Results are obtained by measuring
the mean absolute error between the recovered joint
angles and the known solution for each DOF (Table
1).

In comparing tests 1 and 2, we see that model inac-
curacy has a slightly smaller e�ect than noisy vision
on the mean error for most DOFs in these trajecto-
ries. However, di�erent model con�gurations may in-
duce di�erent types and amounts of error. What is
more interesting is that in all cases these tests high-
light which DOFs become harder to estimate under
imperfect conditions. Here the right elbow is most
vulnerable to error. This is not surprising, as the el-
bow joint angle estimation relies on a single data point
on the lower arm. In contrast, the torso is very sta-
ble, with its joint angles being estimated from 3 data
points on the chest. However, if signi�cant torso error
is present it may induce errors in the arm estimations.

Besides noisy vision and an inexact match between
the model and the teacher's geometry, other sources
of error include simpli�cation of true human kine-
matics, assumptions about the rigidity of the trian-
gle used to recover correspondence between the model

and the teacher's coordinate systems, and the pos-
sibility of an inexact mapping of joint angles from
the teacher to the robot due to di�erent joint angle
limits. Further, when using the head-mounted cam-
eras, recovery of information has additional noise in-
troduced from body oscillations a�ecting the head.
However, even with these problems, we can still ex-
tract enough relevant information to enable imita-
tive behavior. Movies of our results can be seen at
http://www.his.atr.co.jp/�mriley/imitation.html.

4 Summary and Conclusions

We are exploring intuitive and e�cient approaches for
humanoids to acquire new behaviors. Several schemes
have been proposed in the literature where imitation
plays a key role. Many good frameworks exist, al-
though few have yet been implemented for full-body
imitation for robots. Here we present our work to
implement and test such a method on a complex hu-
manoid robot. Methods such as these are needed be-
cause humanoid robots will play an increasing role in
our future.

Our work di�ers from much previous robotics work in
that we emphasize full-body postures rather than the
position of an end e�ector alone. We use 3D vision
and a complex, yet still approximate, kinematic body
model to enable real-time imitative behavior for a 30-
DOF humanoid robot. We solve the inverse kinemat-
ics problem quickly by breaking it into sub-problems.
This yields a joint angle representation of body pos-
tures, which is a more intuitive representation than
motor velocities or forces, and one which facilitates
further interaction. Finally, we test our method with
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real vision data from both external and head-mounted
cameras for 7 DOFs, and with simulated vision data
for up to 32 DOFs.

In future work, we wish to direct humanoid behaviors
interactively through coaching with the ability to in-
tervene and immediately modify behaviors as desired.
Our work on humanoid imitation is the start of a low-
level toolkit which will enable such higher-level inter-
actions between people and robots.
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