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Abstract— Direct transfer of human motion trajectories to
humanoid robots does not result in dynamically stable robot
movements due to the differences in human and humanoid
robot kinematics and dynamics. We developed a system that
converts human movements captured by a low-cost RGB-D
camera into dynamically stable humanoid movements. The
transfer of human movements occurs in real-time. As need
arises, the developed system can smoothly transition between
unconstrained movement imitation and imitation with balance
control, where movement reproduction occurs in the null space
of the balance controller. The developed balance controller is
based on an approximate model of the robot dynamics, which
is sufficient to stabilize the robot during on-line imitation.
However, the resulting movements cannot be guaranteed to be
optimal because the model of the robot dynamics is not exact.
The initially acquired movement is therefore subsequently
improved by model-free reinforcement learning, both with
respect to the accuracy of reproduction and balance control.
We present experimental results in simulation and on a real
humanoid robot.

I. INTRODUCTION
Motion capture has proven to be an effective way to

acquire humanoid trajectories since many years [12], [22].
However, the problem of transferring human motion to hu-
manoid robots becomes much more difficult if the observed
human motion should result in dynamically stable humanoid
robot movements. Since the human and the humanoid robot
kinematics and dynamics are not the same, a copy of human
trajectories usually results in dynamically unstable humanoid
robot motion. Thus the observed human motion needs to
be adapted to the properties of the humanoid robot, but
this requires the availability of models specifying robot
kinematics and dynamics.

Stability of humanoid trajectories is usually ensured by
controlling the robot’s zero moment point (ZMP) [23], which
is defined as the point on the ground where the tipping mo-
ment acting on the humanoid robot, due to gravity and inertia
forces, equals zero [13]. The tipping moment is defined as the
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component of the moment which is tangential to the ground
surface. A biped humanoid robot is dynamically stable at
any given time if its ZMP lies within the area defined by
the convex hull of one (single support phase) or two (double
support phase) supporting feet.

A ZMP compensation filter was developed to enable the
stabilization of walking trajectories [8] and the imitation of
dancing movements [7]. In both cases the stability of motion
was achieved by modifying the horizontal torso trajectory.
Kajita et al. [4] designed a control system which minimizes
the error between the desired ZMP and the output ZMP by
applying a preview controller. Sugihara et al. [20] applied
the inverted pendulum control to generate dynamically stable
walking patterns in real-time. The advantage of inverted
pendulum approaches is that they require only a rough model
of the robot dynamics to be successful. The real-time transfer
of human motion while maintaining balance was studied in
[9], [24], but unlike the system described in this paper, these
authors used marker-based trackers, which are inherently
more precise, and did not utilize prioritized control and
model-free reinforcement learning (see below) to improve
the transferred movements. Another alternative are off-line,
optimization based approaches to reshape human motion, as
described for example in [11], who also used a marker-based
system for motion acquisition.

While a lot of previous research on stability of humanoid
robots was concerned with walking, our first major goal is to
integrate balance control with motion capture systems to gen-
erate dynamically stable reproductions of human movements
in real-time. We propose to apply whole-body prioritized
control for this purpose. In the context of humanoid robots,
prioritized control was used for example to enable the unified
control of centre of mass, operation-space tasks, and internal
forces [16]. Prioritized control for locomotion and balance
control was also addressed in [6].

Center of pressure (CoP) is defined as [2]

xCoP =

∫
S

xFz(x)dx∫
S

Fz(x)dx
, (1)

where Fz is the component of the contact force normal to the
sole(s). CoP and ZMP coincide while the dynamic balance is
being preserved [23], i. e. as long as they are located within
the support polygon. Many humanoid robots (including the
two robots used in our experiments) are equipped with
pressure sensors (typically four) in each foot. These can be
used to estimate xCoP, or equivalently xZMP, even when a
model of the robot’s dynamics is not available. Exploiting
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this information, model-free reinforcement learning methods
can be applied to improve the initial reproduction of human
motion on a humanoid robot. It is important that the initial
movement is dynamically stable because in practice, there is
little hope that model-free methods would find dynamically
stable movements due to the dimensionality of the search
space. The second major goal of this paper is to show that
reinforcement learning can be used to improve both stability
and fidelity of the reproduced motion.

II. MOTION CAPTURE WITH BALANCE CONTROL
The spread of low-cost RGB-D cameras like Kinect and

skeleton trackers based on these cameras has contributed
to a significant improvement of markerless human motion
capture in recent years [18], [21]. Rough, video rate (30 Hz)
body trackers are now generally available and can be used to
reconstruct and transfer human motion to humanoid robots.
Their output are typically the positions and orientations of
body parts including torso, head, lower and upper arms and
lower and upper legs. To transfer this motion to a humanoid
robots that consist of sequential, rotational joints, it is only
necessary to transform the relative positions and orientations
of successive body parts into the appropriate sequences of
Euler angles [17]. We do not reproduce the formulas here
because they depend on the actual humanoid robot. An
example reproduction of human motion captured by Kinect
and reproduced by a 38 degrees of freedom humanoid robot
CB-i [1] is shown in Fig. 1.

To ensure the dynamic stability of a humanoid robot, we
need to control its motion so that ZMP stays within the
support polygon during the reproduction of the observed
human motion. Neglecting the inertia matrices, the following
relation can be obtained between the center of gravity (CoG)

xCoG =

∑N
i=0mixi∑N
i=0mi

, (2)

and the zero moment point xZMP [20]

ẍCoG = ω2 (xCoG − xZMP) , (3)
ÿCoG = ω2 (yCoG − yZMP) , (4)

where

ω =

√
z̈CoG + g

zCoG − zZMP
, (5)

g is the gravity constant, xi is the position of the center of
mass of robot body part i, mi its mass, N is the number
of degrees of freedom, and zZMP the height of the ground
surface. Thus to compute the desired motion of xCOG from
xZMP, we have two equations ((3) and (4)) but they contain
three unknowns because ω depends on zCoG. To resolve this
ambiguity, the desired zCoG is first determined independently
using an inverted pendulum controller. See [20] for details.
To keep the dynamic stability, the desired xZMP and yZMP

should be moved towards the centre of the support polygon,
using for example a simple P-controller

desẋZMP = γx (xP − xZMP) , (6)
desẏZMP = γy (yP − yZMP) , (7)

where xP is the center of the support polygon. The desired
motion of xCoG can then be calculated by integrating Eq.
(3) and (4).

In the following we denote by superscript 0 all entities
given in robot base coordinates, whereas the entities in
world coordinates are written without the superscript. The
relationship between the velocity of the centre of gravity in
base coordinates 0ẋCoG and joint angle velocity is given by
the Jacobian of the center of gravity 0JCoG ∈ R3×N , which
is obtained from Eq. (2) as

0ẋCoG =

∑N
i=1mi

0Jiθ̇∑N
i=0mi

=

∑N
i=1mi

0Ji∑N
i=0mi

θ̇ = 0JCoGθ̇, (8)

where 0Ji is the geometric Jacobian of the centre of mass of
body part i in base coordinates. This relationship, however,
does not take into account that one or two support feet are
fixed in the world coordinate systems, i. e. ẋL = ωL = 0
and ẋR = ωR = 0, where ẋL,R and ωL,R are the linear
and angular velocities of both feet. Sugihara et al. [20] have
proven that if the left or right foot is assumed to be the
main support foot (F = R or L), which does not move in
world coordinates, then the Jacobian of the centre of gravity
in world coordinates can be calculated as

JCoG = R
(
0JCoG − 0JF + Ω

(
0xCoG − 0xF

)
0JωF

)
,
(9)

where

Ω (x) =

 0 −z y
z 0 −x
−y x 0

 ,
R is the orientation of the robot base in world coordinates,
0JF ∈ R3×N and 0JωF ∈ R3×N are respectively the
translational and orientational part of the Jacobian of the
foot, and 0xF is the position of the foot, all in robot base
coordinates. In double support case when both feet are on
the ground we can take for example F = L in Eq. (9) and
add the constraint

JRθ̇ = 0, (10)

where JR ∈ R6×N is the Jacobian of the right foot in world
coordinates.

Thus the relationship between the desired center of gravity
velocity and joint angle velocities under constraint that the
support foot or feet do not move can always be expressed as

˙̃x = J̃θ̇. (11)

In the double support phase we have

˙̃x =

[
ẋCoG

0

]
, J̃ =

[
JCoG

JR

]
, (12)

whereas in the single support phase we simply take ˙̃x =
ẋCoG and J̃ = JCoG.

We can now formulate dynamically stable reproduction
of human movements using prioritized control. The standard
approach is to define stability as primary task and movement
reproduction as secondary task. This leads to the following
control policy

θ̇ = J̃+ ˙̃x + Nθ̇K, (13)
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Fig. 1. Real-time transfer of human motion observed by RGB-D camera. Human figure demonstrating the motion on the screen is mirrored; the robot
uses the same arm as the human.

where N =
(
I− J̃+J̃

)
is the null space matrix of J̃ and θK

are the joint angles estimated by observing human motion.
Joint angles that are not estimated by the body tracker are set
to fixed values. Note that if some of the degrees of freedom
should be controlled independently without considering the
stability of the robot, e. g. the non-supporting leg in the
single support case, then the columns corresponding to the
respective degrees of freedom should simply be excluded
from the above matrices. It is the task of the remaining
degrees of freedom to ensure stability.

III. SMOOTH TRANSITION BETWEEN
UNCONSTRAINED AND NULL-SPACE IMITATION

The movement of the lower body is quite constrained by
the condition that one or both feet must remain motionless
on the ground surface. The upper body motion, however, is
much less constrained as long as the ZMP is well within the
bounds of the support polygon. This is especially true in the
double support phase. Thus in the double support phase we
allow the upper body to move freely until the ZMP starts
approaching the edge of the support polygon. We divide the
control problem into two parts: the lower body control that
includes the movement of all leg degrees of freedom and
always follows the scheme of Section II, and the upper body
control that includes torso, head and arms motion, where we
can allow the robot to follow the observed human motion
more closely.

The proposed control scheme for upper body is based on
the idea of smooth transition between tasks as developed in
[10]. Since the upper body motion does not cause the feet to
move – at least as long as the robot remains stable – the re-
lationship between the upper body joint velocities and ẋCoG

can be expressed simply as ẋCoG = JCoGθ̇, where JCoG is
the Jacobian of the centre of gravity in world coordinates,
with pelvis as the base link at the beginning of the kinematic
chain. We now define a controller that smoothly transitions
between unconstrained upper-body movement reproduction
and reproduction in the null space of stability controller

θ̇ = λ(xZMP)nJ+
CoGẋCoG + Nλθ̇K , (14)

where

Nλ = (1− λ(xZMP)n) diag(N) + λ(xZMP)nN. (15)

and N = I− J+
CoGJCoG.

The transition between unconstrained imitation and imi-
tation in the null space of stability controller is regulated
through the weighting function λ(xZMP). Let d(x) be the
distance of the point within the support polygon to the
boundary of the polygon. We denote by dmin the distance
to the boundary of the support polygon where the robot
should start imitating the motion in the null space of stability
controller only. Then we can define

λ (x) =


d(xP)− d(x)

d(xP)− dmin
, d(x) > dmin

1, otherwise

, (16)

where xP is the center of the support polygon. Since by
definition d(x) ≤ d(xP) for all x within the support polygon,
we have 0 ≤ λ(xZMP) ≤ 1. Exponent n of Eq. (15) controls
how quickly the weighting function λ(x)n drops to zero as
the distance of ZMP to the boundary of the support polygon
increases. In our experiments we used n = 3. Matrix Nλ is
equal to the null space matrix N when ZMP is close to the
boundary of the support polygon. It becomes approximately
equal to diag(N) as ZMP moves to the centre (xP) of
the support polygon. In the following we show why it is
appropriate to set Nλ ≈ diag(N) when the robot is stable,
i e. when ZMP is close to the center of the support polygon.

Any null space matrix N = I − J+J is symmetric and
idempotent, i. e. N2 = N. Consequently

nii =

N∑
j=1

n2ij ≥ 0. (17)

By definition, a pseudoinverse of J satisfies the condition
JJ+J = J. It follows that (J+J)2 = J+(JJ+J) = J+J,
thus J+J is also a symmetric, idempotent matrix. Let cij
be the coefficients of this matrix. As it was shown above,
the diagonal elements of symmetric, idempotent matrix are
nonnegative, i. e. cii ≥ 0. Since N = I−J+J, we can write

nii = 1− cii ≤ 1. (18)

Combining Eq. (17) and (18) shows that the diagonal ele-
ments of N are between 0 and 1.

Let us assume that nii = 1. It follows from Eq. (17) and
(18) that in this case nij = 0,∀j 6= i. This means that
1 is the eigenvalue of N with the associated eigenvector
ei, i. e. Nei = ei, where ei is the unit vector along the
i-th coordinate axis. Thus in this case the motion caused
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by the i-th degree of freedom lies in the null space of J.
Any movement performed by this degree of freedom will
therefore not cause any troubles to the stability of the robot.
On the other hand, if nii = 0, then it follows from Eq.
(17) that nji = nij = 0,∀j. Thus in this case Nei = 0,
which means that ei is orthogonal to the null space of J.
Any motion caused by the i-th degree of freedom pulls the
ZMP directly towards the edge of the support polygon.

We have thus proven that it is reasonable to scale the
transferred human motion by the diagonal elements of N.
Such scaling causes the reproduction to slow down if it
would make the ZMP to move towards the boundary of
the support polygon, thus helping the robot to avoid sudden
movements that could disturb its balance even before full
null-space control is triggered. Since we use feedback control
to reproduce the observed human motion, this slow-down
effect is only temporary and prevents the ZMP to move
too quickly towards the edge of the support polygon. If
the difference between the human and the robot motion
continues to increase, this increase compensates for the
reduction in the gain factor and the robot continues to track
the movement. If the ZMP keeps moving towards the edge
of the support polygon, the overall controller (14) switches
to the standard prioritized control to ensure stability.

Note that the diagonal matrix diag(N) in Eq. (15) can be
replaced by I, resulting in

Nλ = (1− λ(xZMP)n) I + λ(xZMP)nN, (19)

which is equivalent to the method proposed in [10]. With
this method, the matrix Nλ smoothly transitions between
free mimicking (characterized by N0 = I) and mimicking
in the null space of the stability controller (characterized by
N1 = N) without the scaling effects caused by the diagonal
elements of N.

IV. IMPROVING MOTION TRANSFER BY
REINFORCEMENT LEARNING

As noted in the introduction, the location of the ZMP can
be estimated by using pressure sensors in the feet, even
when a model of the robot’s dynamics is not available.
Hence we use pressure sensors to compute the ZMP during
on-line reproduction of the demonstrated human motion.
However, any balance controller, including the one described
in Section II, is based on a (approximate) model of the
robot’s dynamics. While the controller of Section II is
successful at generating dynamically stable robot movements
from the observed human movements, the resulting motion
is not optimal. We propose to improve it by reinforcement
learning, which does not require that a model of the robot’s
dynamics is known in any form.

To apply reinforcement learning, we encode the initially
transferred motion with a suitable formal representation
system. We chose dynamic movement primitives (DMPs)
developed by Ijspeert et al. [3], [15]. With DMPs, the motion
of every degree of freedom y is calculated by integrating the

equation system

τ ż = αz(βz(g − y)− z) + f(x), (20)
τ ẏ = z, (21)

where

f(x) =

∑M
i=1 wiΨi(x)∑M
i=1 Ψi(x)

x, Ψi(x) = exp
(
−hi (x− ci)2

)
.

(22)
Here ci are the centers of radial basis function distributed
along the trajectory and hi > 0. If the constants αz, βz, τ >
0 are set appropriately, e. g. αz = 4βz , this system has a
unique attractor point at y = g, z = 0. A phase variable x
is used in Eq. (22) instead of time to make the dependency
of f on time more implicit. Its dynamics is also defined by
a differential equation

τ ẋ = −αxx. (23)

Like time, the phase variable x, x(0) = 1, must be common
across all the degrees of freedom. Parameters that should
be calculated from a human demonstration and the resulting
robot motion include the weights wi, the goal parameter g,
and the time constant τ . In our experiments we set τ to
be equal to the duration of movement. The goal parameter
g is different for every degree of freedom and is set to
the final human joint configuration as estimated by Kinect.
The weights wi are also determined separately for every
degree of freedom. We use locally weighted regression [15]
to compute wi so that the resulting DMP encodes the joint
angle trajectories as executed by the robot during on-line
reproduction, which – unlike the original human motion – is
dynamically stable on the robot.

While g is already equal to the desired final configuration
and therefore does not need to be improved, the parameters
wi are optimal neither with respect to the stability of motion
nor with respect to the fidelity of reproduction. Previous
research has shown that probabilistic reinforcement learning
algorithms can be employed to learn full-body movement
primitives of high degree of freedom humanoid robots [19].
Here we propose to apply reinforcement learning to the
problem of simultaneous imitation and balance control. In
our experiments we utilized the expectation-maximization
based policy learning by weighting exploration with the
returns algorithm (PoWER) [5]. An important advantage
of probabilistic reinforcement learning algorithms such as
PoWER is that they can make use of initial approximations
for the desired robot motion, which can be obtained from
user demonstrations. Moreover, the amount of exploration,
i. e. how much different the trial trajectories may be com-
pared to the initial movement, can be controlled by setting
the only free parameter of the algorithm, i. e. the exploration
noise. This way the robot can be prevented from trying to
perform physically infeasible movements, which can lead to
damage.

To bring the transferred robot movement closer to the
observed human movement, the reward function for each trial
trajectory ν should evaluate the distance of the transferred
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Fig. 2. Real-time transfer of a walking movement.

trajectory (encoded by a DMP) to the human movement as
estimated by Kinect in joint coordinates, i. e. {qKIN(t2, i)},
where t2,i are the measurement times of the Kinect system.
In addition, the transferred movement should be as dynami-
cally stable as possible. Thus we compute also the distance
of ZMP, or equivalently the center of pressure CoP, to the
center of the support polygon. This results in the following
reward function

r(ν) =
γ

1 + a∆ZMP(ν)
+

1− γ
1 + b∆KIN(ν)

, (24)

where ν denotes the trajectory, 0 ≤ γ ≤ 1, a, b > 0,

∆ZMP(ν) =
1

n1

n1∑
i=1

‖xZMP(t1,i)− xP‖2, (25)

and

∆KIN(τ) =
1

n2

n2∑
i=1

‖q(t2,i)− qKIN(t2,i)‖2. (26)

q(t2,i) and xZMP(t1,i) respectively denote the robot configu-
rations as calculated by integrating a DMP and the associated
ZMPs. The support polygon and its center point xP remain
constant if the supporting feet do not move, but could
otherwise be re-calculated at each time step. We have to
use different sampling rates t1,i and t2,i because the control
rate of our robots and Kinect are not the same. α and β are
automatically determined so that the values of ∆ZMP and
∆KIN are in the same range. They can be set for example
to a = s/‖qmax − qmin‖2 and b = s/d(xP )2, where qmin

and qmax are the joint limits, d(xP ) is the distance from
the center of the support polygon to its boundary, and s is
the common desired scale. γ is a free parameter that can be
selected by a user and balances the weighting between the
fidelity of movement reproduction and stability. The reward
is defined as necessary for importance sampling, which

provides the basis of the reinforcement learning algorithm
PoWER; it becomes small if the value of error functions
(25) and (26) increases, and it is equal to 1 if there are no
errors.

The only other free parameter in PoWER besides the
reward function is the exploration noise, which must be
decided by the user. See [5] for details. We set different
exploration noise for every degree of freedom, reflecting
the fact that some degrees of freedom affect the stability
significantly more than others.

V. EXPERIMENTAL RESULTS

Our real world experiments were conducted on a small-
size humanoid robot HOAP-3 (see Fig. 2) and on a full-size
humanoid CB-i [1] (see Fig. 1). The simulation experiments
were performed using the Simulation Laboratory software
package [14] with CB-i as a model.

In our first experiment we transferred a human walking
pattern to HOAP-3. The results are shown in Fig. 2 and
3. As HOAP-3 is relatively slow, there was a rather large
delay between human demonstration and execution on the
robot. Therefore the human demonstrator had to perform his
movements rather slowly. The robot automatically inferred
from a human demonstration when to switch between the
left and right leg as the main supporting leg and between
single and double support phase. See also the video attached
to this paper.

In our next experiment we transferred human motion to
a full-size humanoid robot CB-i. Here there was much less
delay between the observed and the reproduced movement,
as can be seen in the attached video. We successfully
transferred the movement of 15 degrees of freedom (2 in
each leg, 3 in the torso, and 4 in each arm). The upper-
body degrees of freedom were further improved in simulation
by reinforcement learning. The results are shown in Fig. 4
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Fig. 3. The evolution of ZMP while transferring a human walking pattern
to HOAP-3. In the top row different colors indicate how the robot switches
between a single support and double support phase and how a different leg
is selected as the main supporting leg in Eq. (9). The middle row shows
the evolution of ZMP within each current support polygon. The bottom row
shows the time evolution of the walking pattern.

- 7. In simulation the ZMP was calculated by simulating
pressure sensors on both feet of the robot. In the case of
waving, a larger weight was given to the reward based on
ZMP, while in the boxing example, we gave more importance
to the reward that evaluates the fidelity of reproduction.
As a result, the ZMP error was significantly reduced by
reinforcement learning in the first case, while in the latter
case it changed little. Note that since we discard all unstable
movements during learning, the final trajectory is stable even
if we perform learning based mainly on the trajectory part
of the reward. The fidelity of reproduction was improved in
both cases, but the improvement was more significant and
faster in the case of boxing movement. A significant portion
of the difference between the final robot trajectory and the
observed human trajectory is caused by the physical limits
of the robot.

VI. CONCLUSION

In this paper we showed that it is possible to transfer
human movements observed by low cost RGB-D cameras to
humanoid robots in real time, resulting in dynamically stable
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Fig. 4. The initial robot movements transferred from Kinect while main-
taining stability (green), the learned, stable DMP (red), and the trajectory
measured by Kinect (blue) for waving while squatting movement.

Fig. 5. Improvement achieved by reinforcement learning for waving while
squatting movement. Left is ∆KIN and right ∆ZMP.

humanoid robot movements. We proposed a new approach
based on prioritized control to simultaneously transfer hu-
man movements and control the stability of the robot. The
proposed approach is able to automatically switch between
free imitation and imitation with balance control. With the
developed systems we were able to transfer movements as
difficult as human walking patterns to a small-size humanoid
robot.

In general it is very difficult to acquire accurate models of
the robot dynamics. Thus movements obtained by utilizing
robot dynamics models are usually suboptimal due to the
discrepancies between the model and the real dynamics.
In simulation we showed that by applying a probabilistic
reinforcement learning algorithm PoWER, both the stability
and the fidelity of reproduction can be improved.

The proposed approach enables the learning of dynami-
cally stable humanoid movement primitives. Up to now we
focused on movements and tasks that do not involve the ma-
nipulation of other objects in the environment. However, the
proposed integration of imitation and reinforcement learning
has the potential to be applied also to object manipulation in
a model-free way. This is the next major goal of our research.
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Fig. 6. The initial robot movements transferred from Kinect while main-
taining stability (green), the learned, stable DMP (red), and the trajectory
measured by Kinect (blue) for boxing movement.

Fig. 7. Improvement achieved by reinforcement learning for boxing
movement. Left is ∆KIN and right ∆ZMP.
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