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Force Control of Redundant Robots in
Unstructured Environment

Bojan Nemec and LeoňZlajpah

Abstract—In this paper, a method for force control of redundant
robots in an unstructured environment is proposed. We assume
that the obstacles are not known in advance. Hence, the robot
arm has to be compliant with the environment while tracking the
desired position and force at the end-effector. First, the dynamic
properties of the internal motion of redundant manipulators are
considered. The motion is decoupled into the end-effector motion
and the internal motion. Next, the dynamic model of a redundant
manipulator is derived. Special attention is given to the inertial
properties of the system in the space where internal motion is
taking place; we define anull-space effective inertiaand its inverse.
Finally, a control method is proposed which completely decouples
the motion of the manipulator into the task-space motion and
the internal motion and enables the selection of dynamic char-
acteristics in both subspaces separately. The proposed method
is verified with simulation and with experimental results of a
four-degrees-of-freedom planar redundant robot.

Index Terms—Compliance control, redundant systems, robot
dynamics.

I. INTRODUCTION

ONE OF THE important issues of the new generation of
robotic manipulators is kinematic redundancy. Kinematic

redundancy is characterized by extra degrees of freedom with
respect to the given motion posed by the assigned primary
task. A redundant manipulator has the ability to move the
end-effector along the same task state using different configu-
rations of the mechanical structure. This provides a means for
solving sophisticated motion tasks such as avoiding obstacles,
avoiding singularities, optimizing manipulability, minimizing
joint torques, etc. The result is a significant increase in the dex-
terity of the system, which is essential to accomplish complex
tasks. On the other hand, redundancy also has an important
influence on the dynamic behavior of the robotic system. An
appropriate control of dynamic properties is essential for higher
performance in robotic manipulation. Most of the research in
the field of the dynamics of robotic manipulators has been
devoted to the dynamics in the joint space. To control the
dynamic properties of the system in the joint space, different
control methodologies have been proposed based on joint-space
dynamic models [1], [11]. As the next step, methods have been
proposed where the control takes place in the task space [12].
These methods include the transformations between joint-space
trajectories and task-space trajectories. However, in the case of
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redundant manipulators, these transformations are not unique.
Different methodologies have been proposed to resolve the
redundancy, like optimization of a given performance criteria
while satisfying a primary task [15].

To overcome the limitations of control methods based on
the joint-space dynamics methods, Khatib [8] proposed a
method for dealing with dynamics and control in the task
space. This method enables the description, analysis, and
control of the robot behavior in the task space and can also be
used for redundant manipulators when the dynamic behavior
of the end-effector is of interest. However, for the redundant
manipulators, the end-effector dynamics is only one part of the
dynamics of the whole manipulator. The “rest” dynamics rep-
resent the dynamics of the internal motion of the manipulator.
Recently, Park [16] proposed a decomposition of dynamics
of kinematically redundant manipulators into the task-space
dynamics and null-space dynamics based on a minimally
reparametrized homogenous velocity.

The majority of the task posed to the robots requires inter-
action with the environment. Therefore, the ability to control
the interaction forces is essential for a modern robot. In [14]
we have proposed an approach to the force control of redundant
robots. However, the proposed approach requires structured en-
vironment, where the position of the obstacles is known in ad-
vance or a complex sensory system is used to detect the envi-
ronment obstacles. However, there are many situations where
the obstacles are not known in advance or are changing posi-
tion. An example of such a task could be working in a tube
or working in a completely dark environment, where the vi-
sion sensors cannot be used. Humans solve such a situation by
adapting the compliance of the arm. Our approach tries to im-
itate the human behavior in such a situation. This requires the
study of the dynamic properties of the internal motion of redun-
dant manipulators. We analyze what the causes are for the in-
ternal motion and how to use the internal motion to improve the
performance of the overall system. Next, the influence of the
selection of pseudo or generalized inverse on the internal mo-
tion is discussed and a method to derive the model describing
the dynamics of the internal motion is presented. We define a
null-space effective inertiaand its inverse. Finally, impedance
control method is presented, which completely decouples the
motion of the manipulator into the task-space motion and the
internal motion and enables the selection of dynamic character-
istics in both subspaces separately.

II. K INEMATICS

The robotic systems under study are-degrees-of-freedom
(DOF) serial manipulators. We consider only the redundant sys-
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tems which have more DOF than needed to accomplish the task,
i.e., the dimension of the joint spaceexceeds the dimension of
the task space , . Let the configuration of the manipu-
lator be represented by the vectorof joint positions and the
end-effector position (and orientation) by-dimensional vector

of task positions (and orientations). The joint and task veloc-
ities are related by the following expression:

(1)

where is the manipulator Jacobian matrix. Mapping of
joint velocities to the task velocities is unique, while mapping
of the task velocities to the joint velocities is not. The general
solution of (1) can be given as

(2)

where is the generalized inverse ofand is matrix
representing the projection ofinto the null space of ,

. The first term on the right side of (2) represents the
part of the joint-space velocity necessary to perform the task
and is denoted as , . The second term denoted as

, , represents the joint-space velocity due to the
internal motion. Actually, in the second term of (2) can be
an arbitrary velocity vector and is usually used to perform an
additional subtask like optimization of different cost functions,
obstacle avoidance, etc.

Differentiating (1), we obtain the relation between joint-space
accelerations and task-space accelerations

(3)

Considering also the accelerations in the null space of, the
general solution of (3) is typically given in the form

(4)

To be able to decompose the joint accelerationsinto accel-
erations subjected to the task-space motion and to the internal
motion, (4) has to be rewritten in the form

(5)

The above equation can also be obtained by differentiating (2).
The first two terms on the right side of (5) represent the joint-
space acceleration due to the task-space motion and the last two
terms represent the joint-space acceleration due to the internal
motion. The terms and describe the accelerations due
to the change in the configuration of the manipulator and are
required to maintain the task-space and null-space velocity, re-
spectively [13].

Similar decomposition exists also for the forces. For redun-
dant manipulators, the relationship between the-dimensional
generalized force in task spaceincluding linear forces and
torques and the corresponding-dimensional generalized joint-
space force is described by

(6)

where is matrix representing the projection into the
null space of and is an arbitrary -dimensional vector of
joint torques.

III. SELECTION OF THEGENERALIZED INVERSE

There is an infinite number of the generalized inverses
which satisfy the equation

(7)

In the past, the Moore–Penrose pseudoinverse [10] has been
widely used to resolve the redundancy. It is defined as

where . Its “weighted” counterpart [6] is defined as

where is an weighting matrix. A special form of is
when , where is the inertia matrix of the manipulator.
Khatib [9] has proven that

(8)

is the only pseudoinverse which is dynamically consistent, i.e.,
the task-space accelerationis not affected by any arbitrary
torques applied through the associated null space, ,

. Additionally, the dynamically consistent
generalized inverse is the only generalized inverse which as-
sures that an external force does not produce a null-space accel-
eration [5].

IV. M ANIPULATOR DYNAMICS

Assuming the manipulator consists of rigid bodies, the joint-
space equations of motion can be written in a form

(9)

where is the -dimensional vector of control torques,is the
symmetric positive-definite inertia matrix, is the
matrix due to the Coriolis and centrifugal forces, andis

the -dimensional vector of gravity forces. Vector summa-
rizes effects of all external forces acting on the manipulator.

Using the relation and substituting (4) and
(6) into (9), the model (9) can be rewritten in the form

Note that the terms on the right side of the above equation are
arranged into three groups. The first group includes the forces
acting in the task space. The second group includes torques
acting in the null space of . The third group represents the
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coupling forces and torques. To make the motion of the end-ef-
fector and the internal motion independent, it is necessary that
the terms in the third group are always equal to zero

(10)

The only value of which satisfies the condition (10) isas
defined in (8).

The equation of the end-effector motion subjected to gener-
alized task forces is given in the form [8]

where , , and are, respectively, the sym-
metric positive-definite matrix describing the inertial properties
of the manipulator in the task space, the-dimensional vector
of Coriolis and centrifugal forces, the-dimensional vector of
gravity forces, and the -dimensional vector of external forces,
all acting in the task space

The internal motion of the manipulator subjected to the torque
applied through the null space of can be described by the
following equation:

The matrix, which premultiplies, and is defined as

will be denoted as thenull-space effective inertia matrix. The
matrix describes the inertial properties of the system in the
null space. As has not a full rank, rank , we define
the generalized inverse of the null-space effective inertia matrix

as

Note that , and
.

V. CONTROL ALGORITHMS

Most of the tasks performed by a redundant manipulator can
be broken down into several subtasks with different priorities.
In the following it is assumed that the subtask with the highest
priority, referred to as the main task, is associated with the po-
sitioning of the end-effector and the force acting on the end-ef-
fector, and the secondary task is to track a prescribed null-space
velocity.

Utilizing a formulation of the generalized forces, a control
law is given in the form

(11)

where and represent the control law for the task motion
and internal motion, respectively, and is the task-space
force measured at the robot’s tool center point (TCP) using the
force/torque sensor. The closed-loop dynamics are obtained by
inserting the above equation into (9)

(12)
Next, we will analyze the behavior of the proposed controller
in the task space and null space independently. Premultiplying
(12) by and considering yields

(13)

since and .
Similarly, null-space dynamics can be obtained by premulti-

plying (12) with

(14)

Considering that and , we
obtain

(15)

A. Task-Space Controller

Let be selected as

(16)

where , , is the tracking error, is the desired
task-space acceleration, and, and are constant
gain matrices. The selection of , , and can be based
on the desired task-space impedance.denotes the desired
external force. It is supposed that the external force can
be measured by an appropriate force/torque sensor. Substituting
(16) for in (13) yields

As we can see, the task-space impedance can be chosen freely.
By selecting , , and

the following task-space impedance can be achieved:

, , and are the desired task space inertia, damping,
and stiffness matrices, respectively.

B. Null-Space Controller

Besides the main task, a redundant system can perform an
additional subtask by selecting an appropriate vectorin the
control law (11) which moves the manipulator toward the de-
sired configuration. Let be the desired null-space velocity,
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. To obtain good tracking of in the null space, the
following is proposed [14]:

(17)
where and is the positive scalar describing
feedback gain. Substituting (17) into (15) yields

(18)
Differentiating results in

(19)

Using (18) in the above equation yields

(20)

Note that belongs to the null space ofand .
This can be verified by

since . Hence, (20) can be rewritten in the form

(21)

Next, we show that for , the proposed control method
(17) assures asymptotic stability of the system in the null space

and that the converges to zero. In this case, the last term
in (20) is equal to zero. Let the Lyapunov function be defined
as . Differentiating and substituting (21) for

yields

(22)

since , , and 2 is skew symmetric.
Since is positive definite and is negative definite providing
that is positive scalar, tends to zero, and the proposed con-
troller stabilizes the null-space motion as long as the Jacobian
is nonsingular. Note that the matrix is skew symmetric
only if is formed using Christoffel terms. A similar re-
sult has been independently derived in [3].

Null-space dynamics can be obtained from (21)

(23)

Fig. 1. 4-DOF experimental robot.

Since is idempotent, , it follows ,

. Using the definition of , (23) can be ex-
pressed in the form

(24)

The above equation describes the null space dynamics. Sum-
marizing, the control method (17) enables the selection of the
damping by selecting .

VI. NULL-SPACE MOTION OPTIMIZATION

The force and the position tracking are usually of the highest
priority for a force-controlled robot. The selection of the sub-
tasks with lower priority depends on the specific application
[4]. However, collision avoidance is of great importance, since
the force-controlled robot interacts with the environment. In our
previous work, we implemented the obstacle avoidance algo-
rithm using potential field. This approach requires the distance
between the obstacle and any part of the robot. Besides being
time consuming, this approach requires at least the approximate
position of the environment obstacle. Here, we assume that this
information is not known and cannot be obtained. Therefore, we
allow the robot to bump into obstacles, but we try to minimize
the resulting forces by adopting the null-space dynamics.

An important subtask for the force-controlled robot might be
to benefit the mechanical advantage of the manipulator in order
to minimize joint torques when applying a certain force to the
end-effector. The local joint torque minimization as a perfor-
mance objective was intensively investigated by many authors
[2], [6], [7]. As the joint torque depends on the system dynamics,
it is difficult to express the gradient of the cost function related
to joint torques. We simplified the problem by minimizing only
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Fig. 2. Simulated TCP tracking error.

Fig. 3. Simulated TCP force.

Fig. 4. Simulated obstacle force.

joint torques related to the force applied to the robot end-ef-
fector. We define the cost function in the form , where

is the joint torque due to the end-effector force.
Then, the cost function gradient required to minimize the given
function can be expressed in the form

(25)

...
...

...
...

(26)

where denotes theth column of the Jacobian. This ap-
proach can be justified by the fact that velocities and accelera-

tion during the force tracking are usually low. Another advan-
tage using this approach is that the minimization can be related
to the desired end-effector force and the manipulator can be
brought to the optimal pose before the contact with the envi-
ronment is established.

The desired null-space velocities can be obtained utilizing
modified gradient optimization procedure

(27)

which assures the best optimization step in the case of inertia
weighted pseudoinverse. defines the optimization step.
Vector is a gradient optimization vector defined as

(28)
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Fig. 5. Poses of the robot during the simulation of the task.

Fig. 6. TCP tracking error.

Unfortunately, the local joint torque minimization often
brings the robot into the singular configuration. Therefore, the
singularity avoidance algorithm also has to be implemented.
We have accomplished this task by maximizing manipulator
manipulability proposed by [17].

VII. EXPERIMENTS

The efficiency of the proposed algorithm was tested on a
4-DOF planar redundant robot with all segments of equal length,
presented in Fig. 1. The robot had no limits in joint angles. All
ac brushless motors were located in the robot base in order to
obtain lightweight links. The robot gear ratio was 6, thus, the
coupled dynamics of the robot are not negligible. We used two
JR3 force sensors, capable of measuring three forces and three

torques. One sensor was used for force tracking and the other for
measuring contact force with an obstacle. The sensor used for
force tracking was too heavy to be carried by the experimental
robot, therefore, we mounted the sensor under the environment
plane. The obstacle was a vertical bar mounted on the force
sensor. Forces from this sensor were used to measure the contact
forces between the robot and the obstacle. The robot controller
consists of a Pentium II 360-MHz industrial computer. The pro-
posed control algorithm was realized in SIMULINK and com-
piled using the Simulink Real Time Workshop and Planar Ma-
nipulator Toolbox.

The primary task of the manipulator was to track the desired
force while moving along the wall in the horizontal () direc-
tion. The desired speed was 0.45 m/s and the desired force was
10 N. There was an obstacle in the robot workspace, as shown in
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Fig. 7. TCP force.

Fig. 8. Obstacle force.

Fig. 5. The position of the obstacle and the contact forces were
not known in the control law. The secondary subtasks were min-
imization of contact forces, minimization of the joint torques
due to the end-effector force and maximization of the manipu-
lability index. Because the impact was not the issue, we started
the experiment with the robot in contact with the wall.

First, we tested the proposed control law using the simula-
tion. The simulation results of position tracking, force tracking,
and obstacle force are presented in Figs. 2–4, respectively. Fig. 5
shows poses of the robot in subsequent time intervals. From the
results, we can see that the obstacle contact forces had virtually
no influence on the primary task, which was force and trajec-
tory tracking. By selecting the appropriate null-space dynamics,
contact forces were minimized.

We repeated the same task on the real robot. We obtained a
control rate of 500 Hz. The results are presented in Figs. 6–8.
In this case, we can notice the influence of the contact force
with the obstacle to the TCP tracking error and TCP force. The
performance degradation is mainly due to the elasticity of the
gear belts and gear friction. Although we included a nonlinear
friction compensator in the control loop, it was not possible to
cancel the friction effect.

VIII. C ONCLUSION

This paper has considered the force control of redundant
robots in the presence of unknown obstacles. Instead of an
obstacle avoidance algorithm, we have changed the dynamics
properties of the redundant manipulator in order to minimize

the impact forces. Therefore, special attention was given to
the dynamic decoupling and the inertial properties of the
system in the space where internal motion is taking place; we
defined anull-space effective inertiaand its inverse. Finally,
we proposed a control algorithm (11) which decouples the
motion of the manipulator into the end-effector motion and
the internal motion. The controller enables the selection of
dynamic characteristics in both subspaces separately. The
proposed algorithm was tested using the simulation and on
the real robot. With the simulation results, we showed that
we have successfully decoupled null-space and task-space
dynamics. A disturbance, caused by the obstacle, has virtually
no effect on the primary task. Experiments on the real robot
show similar results, but the performance is degraded by the
elasticity and the friction in the robot joints. On the other hand,
compliant dynamics require low null-space gains, which limit
the performance of the null-space tracking algorithm.
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