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Abstract— The paper describes the control and the navigation
of a skiing robot that is capable of autonomous skiing on a ski
slope using the carving skiing technique. Based on a complex
sensory system it is capable of autonomous navigating between
the race gates, avoiding obstacles and maintaining a stable
position during skiing on an previously unknown ski slope.
The robot was tested on different ski slopes with various race
gates combination.

I. INTRODUCTION

Research community is looking towards new field of
application of humanoid robots. Although some tasks seem
to be less appropriate for future use of humanoid robots,
e.g mountain climbing, riding bicycle, skating, etc, they are
of crucial importance for an understanding of human motion
and in the development of algorithms for autonomous motion
of robots in unstructured environments. One such application
is also alpine skiing[5], [6]. There were only few previous
attempts to develop a robotic skier [3]. In most cases the
researchers used a humanoid robot to imitate some specific
motion related to alpine skiing, but they completely ignored
the problem of maintaining the stability and navigation on an
unknown and unstructured ski slope [7]. Our work focuses
on these two previously ignored problems. We designed a
special 3 degrees of freedom (DOF) robot dedicated for
skiing using the carving technique, which uses a complex
sensory and control system that assure the robot to stabilizes
on the ski slope during skiing and tracks a path marked
with race gates and avoids obstacles [6]. In our previous
work we have demonstrated that the robot is capable of
autonomous skiing on an unknown ski slope. In this paper,
we propose improved navigation and control algorithms.
Algorithms were verified on the ski slope at the different
snow surfaces.

II. SYSTEM OVERVIEW

Carving skis were introduced in the late 80’s and became
widely used in the late 90’s[7]. The main difference between
the carving and traditional skis is that carving skis exploits
their shape to make turns and do not require skidding in order
to perform a turn as do traditional skis. The essential issue
is that the curvature radius of carving skis skis is defined by
the geometry of the ski. Curvature radius can be described
by

r =
L2 cosθ

4 + h2

cosθ

2h
(1)
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where coefficients L and h describe the geometry of the ski
as can be seen in Figure 1 and curvature cord length is
approximated by the ski length L. A similar equation was
presented by Howe [4], who also accounted the penetration
depth of the ski for the snow. Although the penetration has
profound effect to the curvature radius, it is hard to measure
or to predict on a ski slope. From the above equation it is

Fig. 1. Curvature radius of skis

evident that we can control ski turn radii by controlling the
angle between the skis and the skiing surface [2]. Humans
usually perform turns by flexion and extension of knees. To
balance on the ski slope, skiers also use torso movements.
This kind of turn execution motivated the design of our ski
robot. We designed the lower extremities of the ski robot
as two artificial legs in the form of a parallelogram. The
torso has only one DOF and enables motion in the lateral
plane. The kinematics of the 3 DOF ski robot mechanism
is presented in Figure 2. Robot joints are controlled by DC
motors. The overall weight of the robot including batteries
and skis is 19 kg. The size end the weight of the robot is
comparable to the 8 year old child, which enabled the usage
of standard child skis for the experiments. More details of the
robot design can be found in [6]. The robot is controlled with

Fig. 2. Ski robot

a hierarchically build multi processor computer system. The
upper level controller is used for the navigation, the vision
processing and the decision making. Upper level controller
communicates with a GPS receiver and an USB based
camera. The low level controller deals with the skier stability,
the joint control and the sensory system composed of an
electronic gyroscope, force sensors mounted between the skis
and robot legs and the motor position sensors. Computers
communicate through Ethernet using UDP protocol.

III. CONTROL
The task of the robot skier control system is to assure

tracking of a desired path while maintaining the stability
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of the mechanism in an unstructured environment, i.e. on
an unknown ski slope. Additionally, the robot must be
compliant to sudden shocks due to the rough ski terrain.
First, the Jacobian needs to be determined, which describes
the relationship between the change of curvature radius and
the robot joint angle velocities. The robot controls the desired
path with the inclination of the skis, which is accomplished
by the flexion and the extension of the robot legs. The
following equation describes the inclination angle θ of the
robot with respect to the ski surface in dependence of the
joint variables q1 and q2,

cosθ =
d√

(2l(c1− c2))2 +d2
. (2)

where ci denotes cos(qi), d is the distance between the legs
and l is length of the leg segment. Inserting (2) into (1) we
obtain

r =

(
1/4 L2d√

4 l2(c1−c2)2+d2
+ h2
√

4 l2(c1−c2)2+d2

d

)
2h

. (3)

Now, the part of the Jacobian for the inclination to the ground
is

1
2h

[(a−b) (a+b)] , (4)

where

a =
L2dl2(c1− c2)s1

(4 l2(c1− c2)2 +d2)3/2 (5)

and

b = 4
l2h2(c1− c2)s1

d
√

4 l2(c1− c2)2 +d2
. (6)

The second DOF for the leg system is the distance lc,
defined as a distance between the midpoint of both skis
and the midpoint of the robot backbone joint. By keeping
this distance at appropriately constant value, we achieved
the optimal manipulability of the ski robot regarding to the
desired task. Additionally, we used this DOF to control the
robot in a lower or higher pose, just like humans adapt the
skiing pose according to a specific situation. The complete
Jacobian could be given in the form:[

ṙ
l̇c

]
= Jq̇ , J =

[
a−b
2h

a+b
2h

−ls1 − ls2

]
, (7)

where si denotes sin(qi). Using the presented kinematic
control we computed the leg joint variables needed to track
the desired radius. The third robot joint, which moves the
torso, is used to stabilize the robot during the skiing.

A. Stability of skier

The major problem in skiing is maintaining the stability
in the lateral plane. In contrast, a skier is very stable in the
sagittal plane, where he has enough support due to the ski
length. In this direction only small variations of force are
present, which appear mainly due to the change of the local
inclination of the ground and of the knee forward motion.
In the lateral plane we have bigger force changes acting on

an narrower support plane. Therefore we focused only on
lateral stability. In accordance with the previously mentioned
assumptions, we have used the simplified model of the skier
in the lateral plane, as shown in Figure 3. The edging angle

Fig. 3. Simplified model in lateral plane

θ, which controls the curvature radius is controlled by the
extensions (lr, ll) of the legs. Value lc is the distance between
the joint that actuates the trunk and the point on the surface
that is in the middle between the skis. We assume that this
distance is constant. In this case, the model of the skier can
be represented as a double inverted pendulum. The most
stable position of the skier is when the forces are equally
distributed on both skis. In this case the zero moment point
(ZMP) [8] is in the middle between the skis. We will denote
this position as MSP (most stable point). When the ZMP is
outside of the support polygon, one ski loses the contact with
the ground and the skier can fall. Therefore it is necessary
to calculate ZMP of double inverted pendulum in inclined
sufrace. Suppose that the object Oi has a mass mi at the mass
center position ri and it has the inertia tensor Ii. External
forces and torques are represented by Fi,k and Mi, j. Index k
runs through all the forces acting on the i-th object, while j
tracks all the torques acting on the same object. The overall
rotational and translational equation of the system in an
arbitrary point p=[xP yP 0]T on the plane z=0 is

∑
i
(ri− p)×mi (r̈i +g)+∑

i
[Iiω̇i +ωi× Iiωi]

−∑
j

M j−∑
k
(sk− p)×Fk = MP.

(8)

The vector sk points to the position where the external force
Fk acts and g is the gravity acceleration vector on the inclined
surface and is related to the local ground inclination ψ. MP
denotes the resulting torque at the observed point. If we
assume that the only external force is the radial force that
works directly in the center of mass of the bodies then (8)
can be rewritten as

∑
i
(ri− p)×mi (r̈i +g+ari)

+∑
i
[Iiω̇i +ωi× Iiωi] = MP,

(9)

where ari (ari =[0 v2/Ri 0]T ) is the radial acceleration of
i-th object mass. Ri is the radius of the turn for each of the
body segment. Because Ti = Iiω̇i + ωi× Iiωi is irrelevant to
an arbitrary point this leads to

∑
i

(ri− p)×mi (r̈i +g+ari)+Ti = MP. (10)
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In accordance to the ZMP definition, only moment MP=[0 0
Mz]T acts at the point pZMP= [xZMP yZMP 0]. Components
of the ZMP are

xZMP =
∑
i

mi (z̈i +gz)xi−∑
i

mi (ẍi +gx)zi

∑
i

mi (z̈i +gz)
−
−∑

i
(Ty)i

∑
i

mi (z̈i +gz)

(11)
and

yZMP =
∑
i

mi (z̈i +gz)yi−∑
i

mi

(
ÿi +gy + v2

Ri

)
zi

∑
i

mi (z̈i +gz)
−
−∑

i
(Tx)i

∑
i

mi (z̈i +gz)
.

(12)
Using the Newton-Euler formulation to derive the dynamic
equations of the system, the sum of the forces F0,1 acting on
the ground and torques M0,1 are calculated. The moment at
the defined point on the ground is obtained by

MP = M0,1− p×F0,1 (13)

and the ZMP point is calculated by

xZMP =
(M0,1)y

(F0,1)z
yZMP =

(M0,1)x
(F0,1)z

. (14)

In this way the ZMP is calculated only as a by-product of
backward iteration of the Newton-Euler formulation.

As we mentioned previously, the control of the skier has
three main objectives: to control the curvature radius, to
assure the stability on the ski slope and to damp the sudden
force shocks due to the roughness of the ski terrain. The
command variable of the curvature radius r as well as the
command variable for the distance lc is provided by the
navigation module of the ski robot and will be outlined in
the next section. The stability control is accomplished by the
movement of the robot skier torso, which is controlled by the
joint q3. When we can not compensate the excessive external
forces with the torso, we have to use the legs. Consequently,
we can not track the desired curvature radius. In this case the
robot behavior is much like the human behavior - in order not
to fall the skier changes the desired direction of the skiing.
The control algorithm selects a proper action depending on
the stability index and the current movement of the skier.
The stability index is defined as

Φ(θ,q3,ψ,v) = 1−
(

yMSP− yZMP

bsr (θ)

)2

, (15)

where bsr is the margin of stable region in the lateral direc-
tion and yMSP is the most stable point as presented in Figure
3. In order to assure the stability also in presence of sudden
and unexpected ground reaction shocks, we narrowed the
available support polygon. The calculated ZMP is restricted
to stay within the region

− d
2cos(θ)

+ yMSP ≤ yZMP ≤
d

2cos(θ)
+ yMSP. (16)

In accordance with (15) the stability index should not fall
bellow the value 0.75 in the case when we allow maximal
0.5bsr deviation of the ZMP from the MSP. The overall

Fig. 4. Overall low level control scheme of skiing robot

control scheme is presented in Figure 4. The local ground
inclination is estimated from the gyro where a low-pass
filter is applied for the elimination of unpredicted shocks.
Based on the local ground inclination and the current velocity
the inclination margins of the robot are calculated. When
the desired turn radius can not be achieved within the
inclination margins, the commanded inclination is limited
to the inclination margin. In this case the robot preserves
stability but violates the desired turn radius. The difference
between the commanded and the measured robot inclination
is provided to the decision control block, where the sensed
forces are also processed.

The decision control block generates desired motor ve-
locities using the following rules. If the stability index in
the static conditions is above 0.75 then the minimal and
the maximal permissible accelerations of inclination to the
ground are calculated that would cause movement of the
ZMP to the 0.6 bsr. The control acceleration from PD
controller is saturated with minimal and maximal allowable
acceleration. This acceleration serves for the calculation of
the angular velocity of inclination and, it corresponds to
joint velocities q̇1, q̇2. In order to obtain the appropriate
torso movement the stability index is calculated using the
desired acceleration. If the stability index value is still below
0.75, the necessary acceleration q̈3 is calculated in order to
stabilize the robot. In other cases the torso (q3) moves to the
optimal position regarding the static stability.

As mentioned previously, the robot should be compliant to
sudden shocks due to terrain irregularities. A straightforward
method to reduce these shocks uses force-sensors is based on
derivatives of measured forces. Unfortunately, the measured
force signal is very noisy and derivatives of such signal can
not be used in the real-time control applications. Therefore,
we accomplished active compliance based on the estimated
ground reaction forces from the model. Estimated ground
reaction forces are

Fe1 =
F
2

(
1− yZMP

bsr

)
,Fe2 =

F
2

(
1+

yZMP

bsr

)
. (17)

The compliant behavior is obtained using the following
control law

q̇i ==


Kc(Fei−Fi +σ), (Fei−Fi) <−σ

0, −σ≤ (Fei−Fi)≤ σ

Kc(Fei−Fi−σ), (Fei−Fi) > σ

(18)
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where Fi, i = {1,2} are the measured ground reaction forces
of the left and right leg, respectively. Kc and σ are the
chosen compliant controller gain and dead-zone, respectively.
However, it turned out that the active compliance is too slow
to damp all shocks on the ski slope. Note that even humans
can not effectively damp terrain irregularities without the
vision feedback. Therefore, we have used also passive -
mechanical compliance between the skis and the robot legs.

IV. NAVIGATION

Navigation is one of the most challenging areas in the
real-time mobile robot control, especially for non-holonomic
mobile robots. All previously proposed navigation methods
for mobile robots assume that we can control the path
velocity using the drive actuators. In contrast, in the case of
the skiing robot, we can not explicitly control the velocity.
Therefore, the path planning algorithm must adapt to the
current velocity.

The skier robot is a typical non-holonomic system and the
equation of motion can be described as

Ẋ = vcos(ϕ) , Ẏ = vsin(ϕ) . (19)

Here, X and Y are the robot coordinates, v is the absolute
velocity and ϕ is the current direction of the skier projected
on the plane of the ski slope. In our case, the skier direction
ϕ depends on the current velocity and the curvature radius

ϕ(t) =
∫ v(t)

r (t)
dt, (20)

where the curvature radius r is described by . From (1), it
follows that for small edging angles, θ is equal to the natural
side-cut radius of unbent ski. However, experiments have
shown that this equation does not describe the behavior of
the ski at small edging angles satisfactorily. At low edging
angles skidding is more evident, since the ski can not yet
carve a turn into the snow. Therefore, for small edging angles
(θ < 5o),the turning model is described with a simple relation
r = θ−1.

Our task is to plan a path through the race gates, placed
on the ski slope. Gates are both the obstacles and the local
targets. The path is composed of locally generated path
from one gate to next gate. Basically, path generation can
be composed of two parts. The first part is the path after
the completion of the previous turn and the beginning of
the next turn. During this part, the robot skier is directed
towards the next gate with the direction that will enable
the execution of the turn with the smallest possible radius
without violating system kinematic and stability constraints.
This task is accomplished using the virtual potential field,
which direct the skier toward the next gate. During the
second part, the skier executes the turn with the smallest
possible radius. Additionally, we have to ensure the smooth
transition between these two parts. Our path generation algo-
rithm is based on the method, proposed by Fajen [1]. He has
studied human navigation in a virtual reality environment.
He has found out that the human body angular acceleration

Fig. 5. Orientation of the subject in dependence of the goal and an obstacle

depends on view angles and obstacle distances. The angular
acceleration can be described by

ϕ̈ =−bϕ̇− kg (ϕ−ϕc)
(
e−c1dg + c2

)
+∑

i
koi (ϕ−ϕoi)

(
e−c3|ϕ−ϕoi|

)
e−c4doi , (21)

where ϕ denotes the current angle of movement of a human,
ϕg is the current angle to the goal, ϕo is the current angle
to the obstacle, dg and doi are the distances between the
subject and the goal and between the subject and the i-the
obstacle respectively, while b,kg,koi,c1,c2,c3 and c4 are the
tuned parameters (see Figure 5). (21) has three components.
• −bϕ̇ damping component
• kg (ϕ−ϕc)

(
e−c1dg + c2

)
component, which directs the

subject towards the goal. Scalar c2 is used to direct the
subject towards the goal at larger distances between the
subject and the goal.

• +∑
i

koi (ϕ−ϕoi)
(
e−c3|ϕ−ϕoi|

)
e−c4doi component for ob-

stacle avoidance, that rebounds the subject from nearby
obstacles

Our on-line path planing procedure is illustrated in Figure 6,
where O denotes the current gate, which is the obstacle. A
circle is constructed around the obstacle with radius r, which
has to be bigger than the estimated smallest radius the robot
is able to perform at the current velocity, estimated from
the GPS system. For better radius estimation an estimation
of the terrain surface in the vicinity of the gates is also
needed. Unfortunately, this data is hard to obtain. At each
time instance, the robot observes the scene from the point
Ti. The current goal Gi, which lies on the circle with desired
radius r around the obstacle, is calculated based on sensed
obstacle O . When the robot touches the imaginary circle, it
starts to execute the ski turn with radius r until it detects
the next gate. However, this method is not optimal. An
experienced skier will perform the ski turn closer to the
race gates. To do this, we can shift the circle radius along
the line symmetrical to the turn angle. To estimate the turn
angle, we have to estimate also the position of the next race
gate, which is not always possible. In such a case, we use
a properly selected predefined average value for the ski turn
angle. For the navigation on the ski slope we have to estimate
the distance between the robot and the next gate and the angle
between the current robot direction and the next gate. For the
estimation we use single camera mounted on the robot torso
It is assumed that the left and the right gates are marked
with the blue and red fence of equal size, respectively. The
distance d to the next race gate is estimated through the size
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Fig. 6. Local navigation on the ski slope

of the fence. We have used edge detection technique, which
detects all square objects rotated for angle θ+q3 +ψ in the
image plane. Namely, the camera is fixed at the robot torso
and the image rotates with robot inclination and the torso
angle. Due to the changeable outdoor lighting conditions and
due to the different view angles the fence size estimation
is unreliable. We have improved the vision size estimation
using filtering, which assumes, that the size of the detected
object is increasing. From the image we estimate also the
angle φ between the direction of the movement and race
gated, which is proportional to the displacement of the race
gates from the center of the captured image. Unfortunately,
odometry using using camera fails whenever the gate fence
is not visible, which is very often situation during the skiing.
To overcome this problem we have applied Extended Kalman
filtering, which optimally estimates states and output of an
nonlinear system.

Let describe the system state with p = f (X ,Y,ϕ)+w and
the system output with z = h(d,φ)+u, where w and u are the
state and output noise respectively. Robot position in the time
instance t can be predicted from the position and velocities
in the time instance t−1 using equation

p̂t = f (pt−1,vt−1,wt−1)

 Xt
Yt
ϕt

=

 Xt−1

Yt−1

ϕt−1

+


(vt−1,X +wt−1,X )cosϕt−1− (vt−1,Y +wt−1,Y )sinϕt−1

(vt−1,X +wt−1,X )sinϕt−1− (vt−1,Y +wt−1,Y )cosϕt−1

vt−1,ϕ +wt−1,ϕϕt−1

 (22)

where v are the robot velocities. Second subscript denotes
the coordinate. At this instance we calculate also predicted
error covariance matrix

P̂t = AtPt−1AT
t +WtQt−1W T

t , (23)

where A = δ f
δp , W = δ f

δw and Q is estimated noise matrix.
We have evaluated values of this matrix experimentally. Best
results were obtained with Q as diagonal matrix with values
(0.2∆t)2, (0.2∆t)2, (0.02)2. Covariance matrix is initialized
with values, that describe maximal expected errors for X , Y
and ϕ respectively. From the predicted values we calculate
extended Kalman filter updates using the equation

pt = p̂t +Kt(zt −h(p̂t)) , (24)

where the output prediction is calculated with

h(p̂t) =

[
d̂t

φ̂t

]
=


√

p̂2
t,X + p̂2

t,Y

atan(−p̂t,X
p̂t,Y

)− p̂t,ϕ

 ,

and the Kalman gain is

Kt = P̂tHT
t S−1

t , St = Ht P̂tHT
t +Rt , (25)

and

Ht =
δh
δp

, Pt = (I−KtHt)P̂t . (26)

Rt is the camera noise. Kalman filter is initialized each time
the robot passes the race gates and initial distance is set to
10m. Whenever the camera is not able to detect the next race
gates, we use the speed information obtained from the GPS.

V. EXPERIMENTAL RESULTS

Experiments were performed on various ski slopes with
the average inclination of 7 degrees, where also some terrain
irregularities were present. Our experiments showed that the
robot was able to follow the desired path marked by any
combination of four race gates providing that the distance
between the gates allowed the robot to execute the turn.

Fig. 7. Robot skier

Fig. 8. Desired (red line) and real (black line) inclination (θ), local ground
inclination (ψ), target angle (ϕ−ϕo), distance to the gate (do) and velocity
in the sagital plane (v) during the test run
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Fig. 10. Snapshots of the robot and slope view

Results from one typical test run are shown in Figure
8. In the upper plot we can see how the desired robot
inclination (θ) varies with the increasing speed (red line)
and how the stability control limited the robot inclination in
order to assure stability (black line). The next plot shows the
measured local inclination (ψ) of the ski slope in the lateral
plane. The next two plots show the target angle (ϕ− ϕo)
and the distance to the next gate do, estimated from the
vision system and Kalman filter. We can see that we can
estimate these two values also when the vision system looses
the tracked object. During the experiments the robot reached
maximal velocity of approx. 5 m/s, as can be seen in the
bottom plot. Figure 9 shows calculated position deviation of

Fig. 9. yZMP deviation from yMSP

yZMP from yMSP in the lateral direction. In order to show how
the torso movement contributes to the stability, we calculated
also yZMP regarding the fixed torso position. One can note
that also during skiing yZMP never exceeds the stability
margin 0.5bsr (doted line). Figure 10 shows the sequence of
images captured from the robot and the fixed camera at the
same time instances. Finally, Figure 11 shows the robot path
obtained by the velocity integration. Blue dots represent the
estimated gate positions. Since neither the velocity neither
the estimated gate positions were reliable, we obtained a
group of points instead of a single point for the gate position.

VI. CONCLUSIONS

In this paper, we presented a robot-skier capable of
autonomous navigation on an unknown ski slope. One of
the major challenges of such a system is the stability. We
proposed and implemented an algorithm that provides the

Fig. 11. Reconstructed path between the gates

stability of the robot skier on an inclined surface based
on ZMP. Our approach differs from the conventional ZMP
based algorithms since we did not control ZMP exactly.
Furthermore, we assured that the ZMP stays inside the
support region. We proposed hierarchial control law, where
the skier stability is of primary importance. The ski turns
are performed in such a way, that skier stability is preserved.
Additionally, the robot is compliant to the sudden shocks due
to the terrain irregularities. In navigation, we enhanced the
original human acceleration model by the implementation of
virtual goals. It was demonstrated, that with this modification
we obtain similar path as an experienced human skier would
do. At the same time smooth transitions between gates are
generated.
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