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Abstract— When it comes to learning how to manipulate
objects from experience with minimal prior knowledge, robots
encounter significant challenges. When the objects are unknown
to the robot, the lack of prior object models demands a robust
feature descriptor such that the robot can reliably compare
objects and the effects of their manipulation. In this paper, using
an experimental platform that gathers 3-D data from the Kinect
RGB-D sensor, as well as push action trajectories from a track-
ing system, we address these issues using an action-grounded
3-D feature descriptor. Rather than using pose-invariant visual
features, as is often the case with object recognition, we ground
the features of objects with respect to their manipulation, that
is, by using shape features that describe the surface of an object
relative to the push contact point and direction. Using this
setup, object push affordance learning trials are performed by
a human and both pre-push and post-push object features are
gathered, as well as push action trajectories. A self-supervised
multi-view online learning algorithm is employed to bootstrap
both the discovery of affordance classes in the post-push view,
as well as a discriminative model for predicting them in the pre-
push view. Experimental results demonstrate the effectiveness
of self-supervised class discovery, class prediction and feature
relevance determination on a collection of unknown objects.

I. INTRODUCTION

Endowing an autonomous robot with both the ability
to learn about object affordances [1] from experience and
the ability to use these learned affordances to make useful
predictions and manipulations in its environment is no easy
task, and simplifying assumptions are often made in order to
make the problem more soluble. For example, in the case of
object push affordance learning [2]–[6], if the desired result
is to learn how the positions and orientations of objects
change when pushed, the learning task can be simplified
by selecting prior object models, using standard computer
vision techniques to localise the object models within a
scene, and inferring data such as end effector contact points
on the objects using the models. However, when fewer
assumptions are made about the shapes of objects or their
affordances, such techniques may not be as feasible, and
while this increases the complexity of the learning problem,
it is an important research approach from a cognitive and
developmental robotics perspective.

In this paper, we explore object push affordance learning
by gathering data from human object push experimental trials
(see Fig. 1). Objects on a table surface were pushed by a hu-
man, whose hand motion trajectories were tracked while 3-D
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Fig. 1. Our setup for human object push affordance data gathering.

point clouds of the objects before and after interaction were
recorded. The objects were pushed from various different
positions on their surfaces and from various different direc-
tions exhibiting a number of different affordances such as
forward translations, forward topples, left rotations and right
rotations, depending broadly on the shapes of the objects,
their orientations, and how they were pushed. Our goal was
to extend a type of bootstrap learning whereby significant
clusters are discovered in features extracted from the post-
push point clouds that are used as affordance classes in order
to train an affordance classifier using features extracted from
the pre-push point clouds as input in a developmental multi-
view online learning process. Note that a similar learning
process could be realised on an autonomous robot. We use
the above setup to ease the process of data gathering.

An idea for grounding the affordance learning task in the
pushing actions informed our research. We argue that the
approach of visual object recognition followed by object
manipulation informed by a prior object model (see e.g. [6]).
is, although quite useful when the main focus is accurate
prediction, perhaps less important when the main focus
is learning from experience. Instead, here we favour an
approach where little or no prior information on the structure
of the objects being pushed is assumed. To this end, we
propose a features-based approach where, rather than using
pose-invariant visual features, as is commonly the case with
object recognition, we ground the visual features of objects
with respect to their manipulation, that is, by using shape
features that describe the surface of an object relative to the
push contact point and direction.

A. Related Work

Past work on object affordance learning with robots has
seen a varied succession of approaches, ranging from learn-
ing affordances for particular objects [2], to supervised dis-
criminative learning of pre-defined affordance classes from
object features [7], to unsupervised discovery and subsequent

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2791



discriminative learning of affordance classes [5], [8]–[11]
to probabilistic frameworks [3], [6], and others. One of
the earliest works in the literature to deal with affordance
learning in a robot was by Fitzpatrick et al. [2]. The authors
trained a humanoid robot to recognize rolling affordances of
four household objects using a fixed set of actions to poke
the objects in different directions as well as simple visual
descriptors for object recognition.

Paletta et al. [7], [12] developed a mobile robotic platform
equipped with a crane featuring a magnetic end-effector
which was used to pick up metallic objects in its sur-
roundings. Their affordance learning system used decision
trees and reinforcement learning of predictive features (SIFT
descriptors) to distinguish between two affordance classes
of liftable and non-liftable metallic objects. Ugur et al. [11]
worked with a robotic system consisting of a range scanner
and a robotic arm that learned affordances of objects in a
table-top setting using an unsupervised two-step approach
of effect class discovery and discriminative learning for
class prediction. More recently they have applied similar
techniques to a scenario involving self-discovery of motor
primitives and learning grasp affordances [13].

In [3], the authors used a humanoid robot to push objects
on a table and used a Bayesian network to form associations
between actions, objects and effects. In the work of Omrčen
et al. [4], the robot first observes how an object moves when
pushed in a certain direction. The collected data are used as
input to a neural network which learns to predict the motion
of pushed objects. Kopicki et al. [6] used a probabilistic
framework to address prediction of rigid body transforma-
tions in an object pushing scenario both in simulation and
using a real robotic system. Their work was similar to ours
here in that it explicitly addressed the representation of object
parts as well as the combination of knowledge from multiple
models. However, their visual system relied on the use of
prior object models for object localisation, something we
explicitly avoid in this work.

Object shape features have been used in prior work on
push affordance learning [5], [6], [11], [13], but grounding
object shape features relative to pushing actions has not been
studied as extensively. Recent work by Hermans et al. [14]
used shape features encoded in a coordinate frame defined by
object centres and push locations based on 2-D projections
of object point clouds. In this paper, we develop a similar
idea employing full 3-D shape features.

The remainder of the paper is structured as follows. In the
following section, we describe how the action-grounded fea-
tures are derived, including the object segmentation process,
the transformation of both objects and action trajectories
to the action coordinate frame, and the description of the
features themselves. In Section III, we describe our learning
approach. In Section IV we describe our experiments and
results. Finally, in Section V, we conclude.

II. GROUNDING 3-D SHAPE FEATURES IN PUSH
ACTIONS

In our experimental setup for human object push data
gathering, shown in Figure 1, we employed a Microsoft
Kinect

TM
RGB-D sensor for gathering 3-D point cloud data

of scenes and objects, and a Polhemus Patriot
TM

electromag-
netic tracking system for gathering trajectory data of human
hand motions. A wooden table with a wooden frame was
used as the work surface in order to avoid electromagnetic
interference from metallic objects in the environment. A
tracking sensor was placed at the end of the index finger of a
human experimenter, while the tracking source was located
at a corner of the table with the Kinect facing the table
at a 45◦ angle as shown in Figure 1. Objects were placed
at arbitrary locations on the table surface where they were
pushed from various directions and at various contact points
by the experimenter. 3-D point clouds of the scene were
recorded both before and after each push interaction while
hand trajectories were tracked during the interaction. Both
the point clouds and the trajectories were processed offline
where the objects were segmented from the table surface,
object point clouds and push trajectories were transformed
into the push action coordinate frame, and action-grounded
shape features were extracted.

A. Object segmentation

We used tools from the Point Cloud Library (PCL)1 to
perform dominant plane segmentation on scene point clouds
in order to acquire segmented point clouds of the objects
lying on the table surface. This involved using a pass-through
filter to subtract points in the scene cloud outside certain
range limits, using RANSAC [15] to fit a plane model to the
scene cloud, subtracting those scene points that were plane
inliers, and clustering the remaining points to find the objects
using Euclidean clustering [16].

B. Action coordinate frame transformation

We define the action frame to be the coordinate system
with its origin at the contact point on the object, its positive
y-axis pointing in the direction of the pushing motion parallel
to the table surface, its positive z-axis pointing upward from
the table surface, and its positive x-axis pointing perpen-
dicularly to both of them such that a left-handed coordinate
system is formed. In order to transform both the object point
cloud and the push trajectory into the action frame, we per-
form the following procedure. Firstly, we transform the push
trajectory from the Patriot tracker coordinate system to the
Kinect coordinate system by using least-squares adjustment
on a series of control points and calculating a rigid body
transformation of the form x′ = c + Rx, where x′ is the
transformed vector, x is the initial vector, c is the translation
vector, and R is a rotation matrix. The control points are
gathered prior to performing pushing experiments by placing
the tracking sensor at various positions in the workspace,
recording the sensor position, recording the Kinect point

1http://pointclouds.org
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cloud of the scene, then locating the sensor in the point cloud.
Since the pushing motions performed in our experiments
always follow an approximately linear trajectory, we proceed
by using orthogonal distance regression via singular value
decomposition to fit a 3-D line to the push trajectory. Finally,
we find the point of intersection between this fitted line and
the pre-push object point cloud, infer this to be the contact
point, and finally transform both the pre-push and post-push
object point clouds as well as the push trajectory to the action
frame as defined by the contact point and the fitted line.

C. Action-grounded shape features

Fig. 2. Partitioning a sample object point cloud into sub-parts. Top row:
original pre-push object point cloud. Middle row: partitioning planes divide
the point cloud evenly in each dimension to create sub-parts. Bottom row:
planes are fitted to each sub-part for feature extraction.

With both pre-push and post-push object point clouds
now grounded in the action coordinate frame, we turn to
generating a feature descriptor that describes the shapes of
the object point clouds with respect to the pushing action and
that is rich enough to capture the resulting affordance effects.
The main idea behind our approach is to divide the object
point clouds into cells of sub-parts and use the properties of
the sub-parts of the point clouds as a basis for the feature
descriptor. More concretely, we divide each object point
cloud evenly with respect to its minimum and maximum
points along each coordinate axis such that there are seven
cells that overlap for redundancy: one for the overall point
cloud, two for the x-axis, two for the y-axis, and two for
the z-axis. We then use two types of feature descriptors in
each cell. To gauge the position of the sub-part in each cell
relative to the action frame, we find the centroid of the points
in the cell, which gives us three features. To gauge the shape
of the sub-part in each cell relative to the action frame, we fit
a planar surface to the points within the cell and the x and y

components of the plane normal as features. We discard the
z component to reduce the feature space dimensionality, the
x and y components being sufficient to quantify the angle of
the plane from the normal. Examples of these features being
extracted from different point clouds are shown in Figure 5.

Using these five types of features, three for relative part
position and two for planar surface fit orientation, we extract
the five features for each part. This results in the following
list of 35 features that are extracted before

{
O1, . . . , O35

}
and after

{
E1, . . . , E35

}
the push interaction:

• global object point cloud features.
• x-axis division, left part features.
• x-axis division, right part features.
• y-axis division, front part features.
• y-axis division, back part features.
• z-axis division, top part features.
• z-axis division, bottom part features.

III. BOOTSTRAPPING OBJECT PUSH
AFFORDANCES

To enable the type of bootstrap learning discussed in
the introduction, we frame our scenario as a multi-view
online learning problem. Multi-view learning [17], as well as
the related fields of cross-modal and multi-modal learning,
[18]–[21], are machine learning areas which are concerned
with the problem of learning from data represented by
multiple distinct feature sets in different data views or
modalities. Given that common theme, the learning objective
may otherwise differ depending on the particular context
[17]. In our scenario, object pre-push shape features xi =
[O1

i , . . . , O
35
i ]T define the feature space in one data view,

the input space, whereas object post-push shape features
yi = [E1

i , . . . , E
35
i ]T define the feature space in another

view, the output space. Our learning goal is to find significant
clusters amongst the yi feature vectors in the output space,
then use these clusters as classes to train a classifier using
the xi feature vectors in the input space, that is to find a
mapping f : Rn → N from input space feature vectors
to class labels representing affordances grounded in output
space feature clusters. We considered this as a multi-view
learning problem since there is a natural separation between
the two feature spaces under consideration, which model
potential causes and potential effects respectively, and we
wished to use information in the output view (effect) to
influence learning in the input view (cause).

With that in mind, we extended the self-supervised multi-
view online learning algorithm originally proposed in [5].
This algorithm is self-supervised in the sense that the
data distribution in the output space coupled with the co-
occurrence information, is used to form a supervision sig-
nal that directs learning in the input space. The algorithm
achieves something similar to methods for self-discovery and
prediction of affordance classes proposed in other work [13],
but can be trained online and makes use of the class infor-
mation for discriminative learning as it emerges dynamically
during training. In the following, we summarise the relevant
parts of the algorithm. Further detail can be found in [5].
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A. Self-supervised Multi-view Online Learning

Assuming there are two datasets of co-occurring data,
X = {xi ∈ Rm | i = 1, . . . , D} in the input space and
Y = {yi ∈ Rn | i = 1, . . . , D} in the output space, where
we work under the assumption that the xi and yi data
vectors are not all available at once and arrive in an online
data stream, we aim to represent each space via vector
quantization [22] using codebooks of prototype vectorsW =
{wi ∈ Rm | i = 1, . . . ,M } for the input space and V =
{vi ∈ Rn | i = 1, . . . , N } for the output space respectively,
approximating the data distributions in each view. We imple-
ment multi-view connectivity between the two codebooks via
a weight matrix which we refer to as co-occurrence mapping,
defined as follows:

H(W,V) =


γ1,1 γ1,2 · · · γ1,N

γ2,1 γ2,2 · · · γ2,N

...
...

. . .
...

γM,1 γM,2 · · · γM,N

 (1)

where the γi j are weights that are used to record the level
of data co-occurrence between nearest-neighbour prototypes
in each of the codebooks and are adjusted by applying
the Hebbian rule to cross-view prototype activations. We
aim to find significant clusters of prototypes in the output
space which we dub class clusters that we treat as classes
to be used for discriminative learning in the input space.
Codebook training within the input space uses two learning
phases. The first phase involves unsupervised clustering of
the prototypes in each data view using the self-organizing
map (SOM) algorithm [22] such that the data distributions
are roughly approximated. The second phase involves self-
supervised discriminative learning using a modified form of
learning vector quantization (LVQ) [5] such that the positions
of the prototypes in the input space are refined for classifi-
cation purposes using cross-view co-occurrence information.
Throughout, the nearest-neighbour rule is employed using a
weighted squared Euclidean distance,

d2(x,w) =

n∑
i=1

λi(xi − wi)
2, (2)

where xi and wi are feature components of x and w
respectively, and the λi are weighting factors for each feature
which facilitate feature relevance determination as described
later in Section III-E.

The co-occurrence mapping can be used to infer the
relationship between the prototypes in the different feature
spaces by projecting the weights for a given prototype in one
space onto the codebook in the other space. Given prototype
wi ∈ W we define

P (vj |wi) =
γi j∑N
j γi j

(3)

which describes the probability of prototype vj ∈ V match-
ing prototype wi ∈ W based on the co-occurrence map-
ping, where γi j is the connection weight from (1) between
prototypes wi and vj . Thus for a given wi ∈ W , making

Fig. 3. Multi-view classifier construction. Left figure: Cross-view co-
occurrence weight projection. The weights of the H(W,V) mapping (red
lines) from a prototype wi in the W input space codebook (lower red
crosses & Voronoi regions) are projected using (3) (upper red shaded
regions) onto the prototypes of the V output space codebook (upper red
crosses & Voronoi regions) Right figure: Class discovery and cross-view
class projection. After both the codebooks and co-occurrence mapping are
trained (cf. Section III-A), the upper codebook prototypes are clustered
to form class labels (upper blue & green regions, cf. Section III-B). An
appropriate class label is then projected onto a prototype wj ∈ W (lower
blue region) using (5) (cf. Section III-C).

such projections for all vi ∈ V forms a spatial probability
distribution over codebook V and is a useful tool that allows
us to measure for measuring how one data view looks from
the perspective of another in terms of past co-occurrences of
data. A visualisation is provided on the left side of Fig. 3.

B. Class Discovery

In order to find class clusters in the output space, we treat
the prototype vectors as data points and employ traditional
unsupervised clustering to cluster the prototypes. Often, the
k-means clustering algorithm is used for such purposes, but
one issue with regular k-means is that k, that being the
number of clusters, must be selected in advance. It is possi-
ble, however, to augment the algorithm such that k may be
estimated automatically. We employ the X-means algorithm
[23] for that purpose here to find both the optimal k∗ number
of clusters for the prototypes in output space codebook V ,
as well as the actual clustering CVk∗ = {V1, . . . , Vk∗}, where
the Vi are subsets of prototypes in V . The Vi clusters that
are discovered in this way are treated as classes grounded in
output space features that can be mapped back onto the input
space layer using Hebbian projection. This class discovery
and projection process is visualised in Fig. 3.

C. Cross-View Class Projection

For cross-view classification, we require a mapping f :
Rm → L(V) that maps input space samples to class
labels, where L() is some labelling function. To realise this
labelling function, the CVk∗ class clusters found in output
space codebook V via class discovery are projected back
to the input space codebook W . By summing the posterior
probabilities P (vj |wi) provided by such a projection, we
can determine the posterior probability of class cluster Vl in
output view codebook V given prototype wi in input space
codebook W as follows

P (Vl|wi) =
∑

vj∈Vl

P (vj |wi)P (wi). (4)
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This allows us to assign an output space class cluster label
to each of the prototypes in the input space codebook by
maximizing the category cluster posterior probability for
each of them. Thus, given wi, we define a labelling function

L(wi) = argmax
l=1,...,k∗

P (Vl|wi) (5)

that labels the input space prototypes on that basis.

D. Class Prediction

Given an input space test sample x, its predicted output
space class cluster may finally be determined using the
labelling function from (5), the weighted squared Euclidean
distance function from (2), and the nearest-neighbour rule as
follows:

f(x) = L

(
argmin
wi∈W

d2(x,wi)

)
. (6)

E. Feature Relevance Determination

Some features can prove to be more relevant than others
for class prediction, and determining the extent of their
relevance and exploiting this information can improve classi-
fication accuracy. To this end, we make use of an algorithm
developed in previous work for feature relevance determi-
nation, specifically Algorithm 1 from [24]. It exploits the
positioning of the prototypes in the input feature space to
estimate Fisher criterion scores for the input dimensions,
and subsequently, to estimate the λi weighting factors in (2)
for an adaptive distance function that accounts for feature
relevance with respect to classifier output. Due to the boot-
strapped nature of the learning algorithm described in this
paper, class information may not be fully formed at a given
time step during training. Therefore, to avoid corrupting the
online learning process we do not apply the feature weights
during training, but apply them at classification time instead.
Further details on this method may be found in [24].

IV. EXPERIMENTS

To test our affordance learning system, the experimental
environment was set up as shown in Figure 1. We selected 5
household objects (cf. Fig. 4) for the experiments: 4 flat-
surfaced objects; a book, a marshmallow box, a cookie
packet, and a biscuit box, and 1 curved-surfaced object;
a yoghurt bottle. A dataset was collected as follows. A
number of object push tests were carried out for each of
the 5 objects listed previously and the resulting data was
processed, leaving 134 data samples. Objects were placed
at random start locations within the workspace and within
view of the Kinect sensor, and the human experimenter
would perform straight-line pushes on the objects, attempting
to keep the pushes within reasonable limits of 5 different
categories: pushing through the top, bottom, left, right and
centre of the objects respectively, from the direction of the
field of view of the Kinect. For evaluation the samples were
hand-labelled with four ground truth labels: left rotation,
right rotation, forward translation and forward topple, but this
information was of course not used by our self-supervised

learning algorithm, and was used strictly for evaluation
and for training the supervised classifiers outlined below in
Section IV-A. Sample object interactions are shown in Fig. 5.
The results presented below examine three different aspects
of our learning framework: class discovery, class prediction
and feature relevance determination.

Fig. 4. Test objects used in our experiments.

A. Evaluation Procedure

To test our self-supervised learning paradigm on the
dataset described above, we performed 10-fold cross-
validation, evaluating performance online at regular intervals
over the training period. Our self-supervised learning vector
quantization algorithm (SSLVQ) [5], as well as a variation
employing feature relevance determination at classification
time (SSLVQ (FRC)) [5], [24], were compared alongside the
supervised LVQ algorithms GLVQ [25], GRLVQ [26] and
SRNG [27] in this online evaluation. Two main experiments
were performed, the first one performing 10-fold cross-
validation for 1 epoch over the training data to test short-term
training performance, and the second one performing 10-fold
cross-validation for 10 epochs over the training data over 10
trials to test more long-term training performance. In each
case, codebooks in both the input space and output space
consisted of 64 prototypes arranged in a 8 × 8 hexagonal
lattice with a sheet-shaped topology [5], [22]. The feature
weights of the codebook prototype vectors were randomly
initialized to test the abilities of the algorithms to learn
from scratch. The 10-fold cross-validation was therefore
performed in 10 trials and results were averaged in order to
account for the variation in codebook initialization between
trials. The learning phase was switched from unsupervised
learning to self-supervised learning one tenth of the way
through training. Batch SVM was also performed outside
of the online evaluation for reference. Batch methods, as op-
posed to online methods that are trained sample-by-sample,
have access to the entire training set during training, and
therefore usually provide superior results. SVM parameters
were optimized using cross validation over the training data
prior to training.

Given the self-supervision aspect, the evaluation criteria,
by necessity, differed from the traditional match-counting
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Fig. 5. Action-grounded shape feature extraction. Top row: pre-push and post-push 3-D point clouds and action trajectories for the five test objects being
pushed in various different ways. Second & third rows: action-grounded shape feature extraction (cf. Section II-C) for the pre-push and post-push point
clouds, respectively. Plane fits are shown in red for the x-axis divisions of the point clouds, in green for the y-axis divisions, and in blue for the z-axis
divisions. Four different affordances are visible in the columns from left to right: forward translation, forward topple, right rotation, and left rotation.

utilized to evaluate fully-supervised classifiers. Clusters of
prototypes were found in the output space codebook as
described in Section III-B and subsequently matched to
the ground truth classes by first matching all ground truth
labelled training data to nearest-neighbour output space pro-
totypes, then assigning each class cluster the ground truth
label which their respective prototypes matched to most
frequently. Then, given a test sample consisting of an input
space test vector xi and an output space test vector yi, the
input space codebook was tasked with predicting an output
space class cluster Vj for xi using the process described
in Section III-D. The output space test vector yi was then
matched to a class cluster Vk in the output modality via the
nearest-neighbour rule. If the Vj class cluster predicted by
the input codebook matched the Vk cluster and that cluster
also matched the ground truth label for the test sample, this
was deemed to be a correct classification.

B. Results: Full Feature Set

1) Class Discovery: An important consideration in eval-
uating whether or not our algorithm is capable of self-
supervised multi-view learning is to examine if it is capable
of successfully finding class clusters in the output space,
without which self-supervised discriminative learning in the
input space would not be possible. Recall that this is achieved
by clustering prototypes in the output space at classification
time using X-means clustering (cf. Section III-B). But how
quickly do the prototypes position themselves such that this
clustering may happen successfully? The leftmost graphs of
Figures 6 and 7 answer this question by showing the rate
at which ground truth labelled output space test samples

fall within output space class clusters with matching ground
truth labels (cf. Section IV-A) over time. As is evident from
the graph for short-term training over 1 epoch, performance
starts to peak around half-way through training and reaches
near-optimal performance by the end, in which case output
view test samples were correctly matched to the four ground-
truth affordance classes over 94% of the time by the end of
training. In the case of long-term training over 10 epochs,
near-optimal performance is achieved early in the training
process and is maintained throughout, meaning that cross-
view prediction should at least have the opportunity to reach
optimal ground truth prediction rates early on.

2) Class Prediction: With regard to class prediction, batch
SVM scores 92% classification accuracy using ground truth
labels, and although the other learners were not expected to
perform at this level given the fact that they were trained on-
line from a random initialization, this serves as a good refer-
ence point. Turning to the middle graphs on class prediction
in Figs. 6 and 7, most of the learners perform poorly in short-
term training, most of them scoring below 50% classification
accuracy, likely due to there being insufficient training time
to tackle the complexity of the problem. The self-supervised
learners, reaching a rate of 42%, out-perform all of the
supervised classifiers apart from GRLVQ, which reaches just
under 50% accuracy. The self-supervised learners capitalise
slightly in this case from the dynamic class labelling process
that occurs when classifying as described in Section III-D,
while the class labels for the prototypes of the supervised
classifiers are randomly distributed, which means that it
takes time for the labelled prototypes to cluster appropriately.
Long-term training sees all of the learners performing better,
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Fig. 6. Results for 1 epoch of online training over the full feature set. From left to right: class discovery, class prediction and feature relevance results are
shown for 10-fold cross-validation averaged over 10 trials with random prototype initialization (cf. Section IV-A). Bold vertical dashed lines in the class
prediction graphs indicate training phase shifts from unsupervised to self-supervised learning (cf. Section III-A). Comparitive batch SVM class prediction
score: 92%.
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Fig. 7. Results for 10 epochs of online training over the full feature set. Results are shown for 10-fold cross-validation averaged over 10 trials with
random prototype initialization (cf. Section IV-A). Comparative batch SVM class prediction score: 92%.

with GRLVQ scoring 85%, SRNG scoring 81%, SSLVQ
(FRC) scoring 74% SSLVQ scoring 66%, and GLVQ scoring
42%. by the end of training. In this instance it is possible
to see the benefit of feature relevance determination, with its
addition boosting the performance of self-supervised learning
by 8%. GLVQ is known to suffer issues with poor prototype
initialization, hence its relatively poor performance. SRNG
has a slower update rule than GRLVQ, which likely accounts
for its relatively slow adaptation here.

3) Feature Relevance Determination: The rightmost
graphs of Figures 6 and 7 show average feature relevances
at the end of training as determined by the three learners
GRLVQ, SRNG and SSLVQ (FRC) which have feature
relevance determination capabilities. In the 10-epoch case,
all three of them highlight the following list of features as
being most significant for class prediction:
• Overall point cloud, centroid x-coordinate.
• x-axis, left side part, centroid x-coordinate.
• x-axis, right side part, centroid x-coordinate.
• y-axis, front side part, centroid x-coordinate.
• z-axis, top side part, centroid x-coordinate.

In general, the object part centroid features were determined
to be the most discriminative for affordance class prediction.

C. Results: Reduced Feature Set

Using this knowledge, we performed an additional set
of experiments on a reduced feature set over the same
experimental data, this time using only the centroids of the
sub-parts to form the feature vectors in both the input and
output spaces. The experimental parameters were kept the
same as in Section IV-B and the results for these experiments
are shown in Figures 8 and 9. This refinement of the
feature spaces boosts the predictive performance of SSLVQ

(FRC) up to 87% over 10 epochs of training, a significant
improvement over the full feature set.

V. CONCLUSIONS
In summary, the main contribution of this paper was

the proposal of an action-grounded 3-D visual feature de-
scriptor to be used for bootstrapping object affordances in
autonomous robots when little prior information is available
about the objects. We have demonstrated through exper-
imental results how, when used in combination with a
self-supervised learning algorithm, this feature descriptor is
effective at facilitating both affordance class discovery and
prediction in an online learning setting with a number of
initially unknown objects and object affordances. A feature
relevance determination extension to the self-supervised al-
gorithm was also shown to boost affordance class prediction
results by emphasizing the discriminative contribution of
particular features within the descriptor.

With regard to future work, firstly, we aim to migrate the
affordance learning techniques presented here to a humanoid
robotic system. The design of the shape features could
potentially be improved by matching 2-D invariant image
features to 3-D surface features and thereby directly tracking
object part motion during interaction. Looking towards im-
proving the affordance learning aspects, we aim to implement
regression capabilities that would allow for continuous pre-
diction of object and object part positions. The bootstrapping
of significant affordance classes as presented in this paper
would mitigate this task, constraining the problem by guiding
the development of multiple continuous models.
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[4] D. Omrčen, C. Boge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous acquisition of pushing actions to support object grasping
with a humanoid robot,” in Proceedings of the 9th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), Dec. 2009,
pp. 277 –283.
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