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Abstract 

This paper addresses the problem of estimating the 
human body motion from video. Its main contribution 
is the introduction of a new robust optimization frame- 
work that leads to  reliable and accurate body tracking 
and posture recovery. The proposed approach is resis- 
tant to  occlusions and demonstrates that it is possible 
to treat different problems arising in human motion 
analysis in a unified way without using many decision 
thresholds. The implemented system requires only a 
standard CCD camera and no  special markers on the 
body. W e  present experimental results showing the re- 
liability of the implemented tracker. 

1 Introduction 

The understanding of human actions and intentions 
by vision is essential for the design of intelligent robot 
systems capable of working in environments populated 
by humans. The key feature needed to equip a robot 
with such a capability is the ability to track and esti- 
mate the articulated body motion of a person. Other 
applications of human motion estimation include the 
creation of realistic computer animations by motion 
capture, virtual reality, medicine and sports (biome- 
chanics). The main topic of this paper is the recov- 
ery of articulated body motions directly from image 
sequences without using any specialized magnetic or 
optical tracking devices. This is a very difficult prob- 
lem because, firstly, only 2-D images are available and 
secondly, unlike when using an optical tracking device, 
the correspondences between image and body points 
are not known. 

There has been a great spurt of interest in human 
motion analysis from image sequences in recent years. 
A significant part of this research dealt with the recov- 
ery of kinematic [3, 5, 4, 9, 101 and dynamic [15] mo- 
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tion parameters from images captured by one or more 
cameras. Results presented in these papers demon- 
strate that it is possible to recover at least some of 
the human motion parameters from video. Theoretical 
results about the conditions under which the parame- 
ters of articulated motions can be estimated by vision 
[7, 111 support this experimental work. Approaches 
based on nonlinear least squares tracking techniques 
that minimize a region-based criterion function over 
the set of motion parameters have proven to be es- 
pecially effective [3, 91. Potentially, these approaches 
can treat the problems of image segmentation, feature 
tracking and motion estimation simultaneously. An 
example of a more traditional approach that decom- 
poses the problem of human motion capture into a 
body tracking stage and a motion estimation stage is 
the work of Wren et al. [14, 151. 

In this paper we propose to incorporate the non- 
linear least squares tracking approach into a robust 
optimization framework. This makes the tracking pro- 
cess more resistant to occlusions and other sources of 
model violations. We begin by introducing a stan- 
dard approach for the kinematic modeling of articu- 
lated structures. Using a kinematic model we relate 
the 3-D body motion directly to the image motion and 
show how to estimate the kinematic parameters by 
use of a robust optimization framework. We conclude 
the paper by presenting some experimental results il- 
lustrating the performance of our motion estimation 
scheme. 

2 Kinematic and Geometric Modeling 

To measure the motion of a human body by vision, 
we need to be able to relate the points on the body to 
the image points. A 3-D model of the human body is 
needed to accomplish this task. An extensive discus- 
sion of this topic can be found in [l]. For our purposes 
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Figure 1: Computer graphics model of a human body 

it is sufficient to model the motion of a human body as 
an articulated motion of rigid body parts. At the mo- 
ment we model the geometry of body parts by simple 
volumetric primitives like 3-D ellipsoids. However, we 
are currently working on the incorporation of a more 
accurate body model (see Fig. 1) into our motion esti- 
mation scheme. It will be clear from the discussion in 
this paper that the usage of accurate computer graph- 
ics models - apart from the fact that rendering of such 
models is more complex than rendering of simple vol- 
umetric primitives - does not require any changes in 
our motion estimation scheme. 

Articulated motions can be represented by kine- 
matic chains. There are many parameter systems that 
can be used to model kinematic chains. The most 
well-known one is the Denavit-Hartenberg parameter- 
ization, which is a de facto standard in robotics. An 
increasingly popular alternative are the twist coordi- 
nates [SI, which were first used to model the human 
body motion in [3]. We also used twist coordinates 
to parameterize the articulated body motion in our 
experiments. We do not expect, however, that the 
choice of one or the other kinematic parameter sys- 
tem would have a great impact on the estimation of 
motion parameters in our framework. 

Regardless of the parameter system used to rep- 
resent the human body motion, we can characterize 
the body motion by a mapping describing the for- 
ward kinematics of the underlying mechanical struc- 
ture. The forward kinematics map specifies the posi- 
tion and orientation of the local frame attached to the 
body segment relative to the base frame. It is given 
by a series of matrix multiplications, parameterized by 
joint angles 81, . . . ,On. In homogeneous coordinates, 
we can calculate the position of a point attached to 
the k-th body segment after motion as follows 

where xo is the position of a point attached to the k-th 
body segment given in the local body coordinate frame 
and gk is the mapping describing the forward kinemat- 
ics of the first k segments in the kinematic chain. For 
each fixed parameter set 81, .  . . , ek, gk(61, .  . . ,e,) is a 
4 by 4 matrix specifying a rigid body transformation 
in homogeneous coordinates. A complete model of the 
human body consists of a number of kinematic chains. 
However, consideration of this fact would only compli- 
cate the notation and does not influence the resulting 
estimation problems, and we neglect this fact in the 
rest of the paper. 

Unlike in many problems in robotics, in which the 
position and the orientation of the base frame is fixed, 
we must consider the possibility that the base frame is 
moving. This motion can be caused either by human 
body motion or by camera motion. Hence the position 
of a body point after motion is given by 

2 = g ( R , d )  * g k ( e l ,  * * * , e k )  ' zo, (2) 

where g ( R ,  d )  is the homogeneous matrix correspond- 
ing to rotation R and translation d of the base coor- 
dinate frame with respect to the camera frame. 

3 Relating human body appearance 
and motion to images 

Given the body and the camera model as well as 
the current body posture, the relationship between the 
corresponding image and body points can be expressed 
by a combination of kinematic and camera transfor- 
mations. We use the perspective projection to model 
the geometry of the camera transformation. This re- 
sults in the following relationship between the image 
point U and the corresponding world point x 

(3) 
U =  Fxlz ,  
U =  FYlG 

where F is the focal length of the camera. We denote 
this mapping by f, hence U = f(F, 2). 

Let the coordinates of a body point in a local body 
coordinate frame be denoted by xo. Assuming that 
this point belongs to the k-th body segment and that 
the configuration of the body at time t is given by 
R( t ) ,d ( t ) ,&( t ) ,  . . . , e k ( t ) ,  its image position ~ ( t )  af- 
ter motion and projection can be calculated by a suc- 
cessive application of mappings (2) and (3) 

'Il(t) = f [ F ( t ) , g ( R ( t ) , d ( t ) )  * (4) 
g & ( e l ( t ) , . . . , e & ( t ) )  *x0I. 
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While it is possible to model the body and the cam- 
era geometry accurately, it is very difficult to model 
the reflectance function of the body surface, lighting 
conditions and photometric properties of cameras. If 
these properties were modeled, then we could predict 
the intensity and color of a body point projected onto 
the image plane and calculate the difference between 
the brightness of an image point U and the predicted 
brightness of a corresponding body point zo 

e ( F ( t ) , H ( t ) , e l ( t ) , . . .  , en ( t ) ; zO)  = I ( u , t ) -  

m t ) ,  R ( t ) , d ( t ) , 4 ( t ) ,  . . . , 4 ( t ) ;  zO). 
( 5 )  

Here denotes the measured, possibly filtered, image 
and I denotes the predicted image of the body. De- 
spite the difficulties involved with such a formulation, 
Rehg and Kanade [9] were able to predict the appear- 
ance of the human hand using a set of hand templates. 
They minimized the sum of squared differences using 
a simple gradient-based minimization algorithm to es- 
timate the kinematic parameters of a hand. Assuming 
that a good initial approximation for the hand config- 
uration is available (which is the case if the sampling 
rate is high enough), they were able to track the hand 
by sequentially minimizing their criterion function. 

Unfortunately, the necessity to predict the image 
brightness often forces us to make assumptions which 
are too restrictive in practice. An alternative approach 
was inspired by a region-based framework for the cal- 
culation of optical flow fields [2]. A standard assump- 
tion in the estimation of optical flow fields is bright- 
ness constancy. This assumption states that the image 
brightness of a world point does not.change in an im- 
age. If a world point is projected onto the image point 
U at time t and onto the image point U + Au at time 
t +At ,  then the brightness constancy can be expressed 
mathematically as 

I(u, t )  = I(u + Au, t + At) ,  (6) 

where I ( u ,  t )  denotes the image brightness at pixel U 
at time t. 

Assuming that the change in the body configuration 
and in the focal length of the camera from t to t + 
At is given by (AF, A H ,  A&, . . . ,A&) ,  we have the 
following relationship between the motion of the body 
point and the motion of the image point 

u(t)+Au = f [F( t )+AF,  A H  * g(R( t ) ,  d( t ) )  * 
~k(el(t~+ael,...,ek(t~+~ek~.~O1, 

where A H  denotes the change in the body position 
and orientation specified by a 4 by 4 homogeneous 

matrix. Bregler and Malik [3] were the first to ex- 
change the affine motion model, which is often used 
in the estimation of optical flow fields, with the above 
kinematic model (unlike us they used the orthographic 
projection to model the camera transformation). This 
leads to the following expression for the violation of 
the brightness constancy at projection of zo 

e(AF, A H ,  A@,, . . . ,Adn; xO) = 

I ( f [ F ( t ) , g ( R ( t ) , d ( t ) )  * 

g k ( 4 ( t ) , * . . , @ k ( t ) )  *zOl,t) - (7) 

I ( f [ F ( t )  + AF, A H  g ( R ( t ) ,  4 9 )  . 
gk(e l ( t )+ae , ,  . . . ,ek(t)+aek). z o ] , t + a t )  

If the body configuration and the camera focal length 
at time t are known, then the body configuration and 
the camera focal length at time t+At can be calculated 
by minimizing the violation of the brightness con- 
stancy between the two measurement time instants. 
This amounts to optimization of the following crite- 
rionl 

E(AF, AH,A81, .  . . , A & )  = 

Ei=1 CzoEBk(t)e(AF,AH,Ael,...,Aen; ='I2, 
(8) 

where &(t) denotes the set of visible points which 
belong to the Ic-th body segment and projects onto 
the pixels of the captured image. 

In practice Bk( t )  can be determined by calcu- 
lating the projection of a geometric model of the 
observed body from the given configuration R(t) ,  
d ( t ) , & ( t ) ,  . . . , 1 3 k ( t )  onto an image plane. At the mo- 
ment, we approximate the body segments by 3-D el- 
lipsoids. However, a model of an arbitrary complexity 
can be used as long as it is possible to render it onto 
an image plane from a given configuration. This is 
a significant advantage over approaches that do not 
allow the use of standard computer graphics models. 

4 Making Gauss-Newton Iteration 
More Robust 

A straightforward minimization of the least squares 
criterion function (8) leads to problems because it is 
not possible to determine the sets Bk( t )  without er- 
rors in practice. Points that are falsely classified as 

'It is straightforward to include in the optimization criterion 
(8) residuals stemming from images taken by different cameras. 
The usage of color information is also possible and results in 3 
residuals per pixel (each color channel contributes one residual). 
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body points and assigned to &(t) must be treated 
as outliers by the optimization algorithm. Moreover, 
since the change in body configuration is not known 
in advance, even some of the points from &(t) that 
really belong to the body will not be projected onto 
the body image at the next time instant t + At. Such 
points must also be treated as outliers. An EM-based 
segmentation algorithm was proposed to solve these 
problems [3]. However, the results from the optical 
flow literature suggest that a robust optimization ap- 
proach might yield a better solution. 

Robust estimators have proven to be effective for 
fitting model parameters to a data set in many com- 
puter vision problems [12]. Among the most useful ro- 
bust estimators are the M-estimators (maximum like- 
lihood type estimators), which were thoroughly stud- 
ied by Huber [6] for the case of linear regression. A 
straightforward application of these estimators sug- 
gests that instead of minimizing the sum of squares 
(8 ) ,  we should minimize a sum of less rapidly increas- 
ing functions of the residuals 

E(AF,AH,AO,, . . . , AO,) = 

E;==, CZOE&(t) p(e(AF, A H ,  A017 - .  ., A&; 
(9) 

Many p functions with different properties have been 
proposed in the literature [2, 121. Unfortunately, the 
minimization of the above criterion function is a very 
difficult problem. First of all, the number of residuals, 
which is equal to the number of pixels classified as part 
of the body image, is very large. For example, there 
were about 10,000 residuals per image when the videos 
shown in Fig. 2 and 3 were processed. Furthermore, 
unlike in the case of linear regression, where the resid- 
ual function e is a linear function of parameters, here 
we have a nonlinear residual function. Finally, all use- 
ful p functions are nonconvex. All these factors make 
the direct minimization of (9) a very difficult prob- 
lem and we in fact encountered convergence problems 
when we tried to minimize it directly using general 
optimization techniques available in Matlab. 

For this reason we decided that instead of mini- 
mizing the robust criterion (9), we would rather try 
to calculate the minimum of criterion (8) in a robust 
way. Standard methods for nonlinear least squares 
problems are the Gauss-Newton and the Levenberg- 
Marquardt iteration. These two iterations are based 
on the computation of a vector-valued function e = 
[e(AF, A H ,  A&, . . . ,A&; and of its Ja- 
cobian matrix. The Jacobian matrix of the residuals 
can be calculated using the chain rule which enables us 
to combine the Jacobian of the underlying kinematic 

structure, the Jacobian of the camera transformation 
and the numerically calculated image gradient into the 
residual Jacobian. In this paper we consider only the 
Gauss-Newton iteration in which the modification for 
the current estimate of motion parameters is calcu- 
lated by solving 

(10) 

Here the 4 by 4 homogeneous matrix specifying the 
modification for the position and orientation is given 
by A H  = g(exp(Ar),Ad) (transformation g is de- 
fined as in Eq. (2))2. Eq. (10) specifies an overcon- 
strained system of linear equations. Instead of solving 
it in a least squares sense, we propose to calculate the 
solution by use of a robust estimator. This makes the 
underlying iteration more robust while, provided the 
robust estimator works well, its convergence proper- 
ties are not altered. The main advantage of such an 
approach over direct minimization of the robust cri- 
terion (9) is that it calculates the optimal estimate 
by solving two well understood problems: nonlinear 
least squares optimization and robust linear regres- 
sion. Many different estimators for the calculation of 
a robust linear regression estimate have been proposed 
in the literature. The most commonly used ones are 
the M-estimators and the LMS-estimator (least me- 
dian of squares). We omit the details and relate the 
interested reader to the literature [6, 121. 

To calculate the body configuration at time t + At, 
we first project the body model from the configura- 
tion calculated at time t onto the image taken at this 
time instant. Body points corresponding to pixels con- 
tained in the synthetic body image are assigned to the 
sets &(t) and the iteration is initialized by taking zero 
as an initial approximation for the change in the body 
configuration. 

The body configuration is not known at the begin- 
ning of the tracking process, i. e. at t = 0. Currently, 
the tracking algorithm must be initialized manually by 
clicking with a mouse on the boundary of body seg- 
ments which are then approximated by 2-D ellipses. 
Using this information and the body model we can 
calculate the initial parameters needed by the tracker. 

It turns out that the estimation of focal length un- 
der perspective projection model often leads to con- 
vergence problems. However, making even a rough 
estimate for the focal length fixed throughout the opti- 
mization process results in a reliable convergence. Al- 
ternatively, the orthographic projection can be used. 

J . [AF, ArT, AdT, AO,, . . . , AO,IT = -e. 

2Note that the calculation of A H  = g(exp(Ar), Ad) is more 
difficult than the calculation of other motion parameters be- 
cause the set of all rotations is not a vector space. See [13] for 
the treatment of this problem. 
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Figure 2: Projection of volumetric primitives building the body model from the estimated postures 

Figure 3: Tracking of a similar motion as above with an incomplete body model. Although the arm has not been 
modeled, the system was able to track the rest of the body reliably. This shows that our approach can handle a 
significant amount of occlusion. 

Figure 4: Arm tracking in a 12 seconds long video 

Figure 5:  Geman-McClure error function 

5 Experiments and Future Work 

In our experiments we utilized the Gauss-Newton 
iteration and M-estimators to track the human motion 
in a single video source. We made use of the Geman- 
McClure function (see Fig. 5 ) ,  which was employed 
before for the calculation of optical flow fields [2], to 
specify the error function for the M-estimator. The 
Geman-McClure error function is defined by 

As its influence function $(x) = p'(z) tends to 0 as 
(21 tends to infinity, points that violate the model con- 

Table 1: Convergence of the robustized Gauss-Newton 
iteration 

Norm of the iteration step 

3.342622e+01 

5.367020e+00 

1.602283e-01 

1.229976e-03 

1.182431e-04 

1.182889e-05 

1.158693e-06 

straints significantly have only little influence on the 
estimated parameters. Typical convergence of the re- ~ 

sulting iteration is shown in Tab. 1. 
We tested our approach by processing several real 

body motions. Results from three different experi- 
ments are shown in Fig. 2, 3 and 4 (please check the 
web site http://www.erato.atr.co.jp/Nude/ to see the 
QuickTime movies of the estimated motions). These 
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Figure 6: Motion parameters (shoulder and elbow an- 
gle) estimated by processing the motion from Fig. 4 

motions were recorded on a video tape and then digi- 
tized using a standard video system. The digitized im- 
age sequences contained 30 images per second of video. 
We use different image sizes: 240 x 320 and 240 x 640 
were used in the presented experiments. The images 
were smoothed by a Gaussian filter before being pro- 
cessed by the tracker. Although the quality of such 
images is rather low, we could successfully process the 
presented walking sequences as well as the arm motion 
sequence. The trajectories of the estimated angles of 
the arm motion from Fig. 4 are shown in Fig. 6.  Care- 
ful analysis of the video (see the web site) shows that 
the measured motion parameters make sense. 

Our future work will concentrate on learning tex- 
ture maps of the observed surfaces. This will make 
the proposed approach less sensitive to the accuracy 
of the initial approximation for the body configuration 
and will also prevent the model from drifting from its 
image. In the current implementation such a drift can 
occur when there is a significant error in the estimated 
body configuration which consequently introduces a 
significant error into a body model used to estimate 
the body configuration at the next measurement time 
instant. 
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