
IEEE Robotics & Automation Magazine30 1070-9932/10/$26.00ª2010 IEEE JUNE 2010

Primitive-Based Modeling
and Grammar

I
n the area of imitation learning, one of the important research
problems is action representation. There has been a growing
interest in expressing actions as a combination of meaningful
subparts called action primitives. Action primitives could be
thought of as elementary building blocks for action represen-

tation. In this article, we present a complete concept of learning
action primitives to recognize and synthesize actions. One of
the main novelties in this work is the detection of primitives in a
unified framework, which takes into account objects and
actions being applied to them. As the first major contribution,
we propose an unsupervised learning approach for action primi-
tives that make use of the human movements as well as object
state changes. As the second major contribution, we propose
using parametric hidden Markov models (PHMMs) [1], [2] for
representing the discovered action primitives. PHMMs repre-
sent movement trajectories as a function of their desired effect
on the object, and we will discuss 1) how these PHMMs can be
trained in an unsupervised manner, 2) how they can be used for
synthesizing movements to achieve a desired effect, and 3) how
they can be used to recognize an action primitive and the effect
from an observed acting human.

The need and motivation for imitation learning have been
widely documented in the area of robotics during the last
decade [3]–[6]. The open challenge in imitation learning is to
develop a compact and flexible representation that can be used
for action planning, action recognition, and action synthesis.
Many approaches follow the arguments raised in [7] and [8]
that human actions are composed of action primitives similar
to human speech, being composed of phonemes, and that the
same parts of the human brain seem to be responsible for the
generation and recognition of human actions.

Hence, the use of action grammars based on action primi-
tives is a plausible representation. This work is based on the

idea that all actions can be described by a finite set of action
primitives [9] and that there exists a grammatical description of
how these primitives can be combined [9], [10]. It is, however,
less obvious how 1) these action primitives and the associated
grammars can be extracted automatically from visual observa-
tions without any input in addition to the visual observations
[10], 2) how they should be represented in terms of data struc-
tures, and 3) how they can be used simultaneously for action
recognition and action synthesis.

For the learning of primitives and grammars, most of the
state-of-the-art approaches employ an off-line, supervised
learning stage, where the primitives are labeled by the teacher
and are then used in the recognition stage. The problem of
on-line continuous learning has been studied recently in [11],
where segmentation and classification are performed in an
unsupervised manner. In this article, we study the problem of
unsupervised detection of action primitives and their subse-
quent use for action recognition and action synthesis tasks.
One novelty in our work is to consider actions, where the
teacher is interacting with objects rather than considering onlyDigital Object Identifier 10.1109/MRA.2010.936961

©
S

T
O

C
K

B
Y

T
E

,
E

Y
E

W
IR

E
,

D
IG

IT
A

L
V

IS
IO

N
&

B
R

A
N

D
X

P
IC

T
U

R
E

S

BY VOLKER KR€UGER, DENNIS L. HERZOG, SANMOHAN BABY,
ALEŠ UDE, AND DANICA KRAGIC

the free body movements. The changes in object state are
facilitated directly in the primitive learning phase.

Once the primitives are detected, we can use different tech-
niques to represent them parametrically. A hierarchical repre-
sentation is necessary when attempting to integrate low-level
control and high-level action-planning aspects. An additional
contribution to our work is the use of PHMMs for modeling
action. Although many different body movements are able to
induce the same changes in the object state, PHMMs offer a
unified framework that allows to combine the movement tra-
jectories in terms of their effect on the object.

To make the contributions clearer, let us consider the fol-
lowing scenario. A robot is observing a human performing
actions on objects such as taking object A and placing it at loca-
tion B or inserting object A into object B. After the demonstra-
tion stage, the robot is requested to identify 1) a set of action
primitives and 2) the corresponding grammar from the obser-
vations. We relate the expected outcome of the system to a
graphical model (Figure 1). In Figure 1(a), the actions on the
objects may be described with a general approach–act–remove
cycle. In Figure 1(b), more intuitive and hand-selected action
primitives with the corresponding grammar are shown. The
work presented here derives these action primitives and the
corresponding grammar automatically from a set of demonstra-
tions. These are then further modeled by a PHMM-based
representation and used for generating actions on the robot to
achieve a desired effect as well as to allow the robot to recog-
nize the primitives and their effects from human performances.

This article is organized as follows. In the “Background and
Motivation” section, we give an overview of the previous
research and motivation for our work. In the “Unsupervised
Learning of Action Primitive Classes According to the Effect
on Objects” section, we discuss our approach for learning

action primitives and the corresponding grammar. In the
“Building PHMMs for Each Primitive Class” section, we
present our PHMMs for modeling the action primitives for
the purpose of synthesis (the “Synthesizing Actions with
PHMMs” section) and action recognition (the “Recognition
of Humans’ Actions” section). The final comments are given
in the “Conclusions” section.

Background and Motivation
The derivation of action primitives is not trivial; ideally, the
demonstrations are repeated, possibly, even by different teach-
ers and different ways to assure good statistics. When actions
are performed on objects, the objects and/or the human
teacher may not necessarily be at the same location so that the
visual appearance of these performances is likely to vastly differ
from each other. One obvious way to look for primitives in
demonstrations is to search for statistical cooccurrences, i.e.,
compare trajectories and identify corresponding and reoccur-
ring parts [13]. However, since the trajectories can vary from
each other if the human agent or involved objects are at differ-
ent locations, such an approach will generate a lot of primitives
[13]. Thus, an important challenge is to identify the primitives,
independent of the variability in appearance.

To solve this problem, we would like to argue that, for object
manipulation actions, one should consider both human move-
ments and the objects to which these actions are applied. Indeed,

(a)

Approach
Push

Forward

Push
Side

Move
Side

Rotate

Grasp

Remove

(b)

Approach

Move
Side

Rotate

Remove
Objects

Remove

Grasp

Push
Forward

Push
Side

Figure 1. (a) A set of demonstrated actions. (b) The intuitive and hand-selected action primitives with the corresponding
grammar [12].

Action primitives could be thought of
as elementary building blocks for

action representation.

IEEE Robotics & Automation MagazineJUNE 2010 31

actions and objects seem to be intertwined, and we observe that
a human/humanoid action can be seen from two different per-
spectives: 1) we look at an action as being defined by movements
of body parts of the humanoid agent. This is what we need for
three-dimensional (3-D) body tracking and movement synthe-
sis; 2) we can also look at actions as being defined by the effect
the human movement has on an object, e.g., push object and
rotate object. By looking at the state of the object, the effect of a
human movement is a change in that object state. Defining the
movement space as the space of human movements and the
object state space as the space of object states, we define a dual
view of the human actions, one from the movement perspective
and one from the object perspective. Indeed, one is tempted to
identify the effect of movement to be the semantics of that cor-
responding movement.

Therefore, instead of analyzing the movement space, as
done in [12] and [13], we suggest to approach the detection of
action primitives by analyzing the object state space. This way,
we are able to identify all human movement trajectories to be
instances of the same primitive as long as they induce the same
effect on the object.

The concept that objects and actions are intertwined is of
course not new to robotics researchers [14]–[20]. However,
the focus of many of these works is to apply known motor
actions to learn about objects [14], [15], [18], [20], either to
segment them or to learn about their affordances. While

some other works consider the role of imitation learning
within such systems [17], [19], the objects are still not used to
support the segmentation of motor experiences. The main
difference between these works and our research is that we
primarily use objects to gain better action knowledge, e.g., to
automatically extract motor primitives from sensorimotor
experiences and to parameterize them with respect to the
object states. In this sense, our work is complementary to the
aforementioned research.

A major difficulty in using the effects of human movements
for identifying the primitives instead of trajectories in move-
ment space is that state-of-the-art approaches such as hidden
Markov models (HMMs) or HMM networks [21] cannot be
easily used anymore for recognizing and synthesizing move-
ments on objects: they only allow to model motor primitives
with respect to a specific desired effect. For example, one
HMM can only represent one pointing movement in a spe-
cific direction. For each new pushing direction, a correspond-
ing HMM needs to be constructed. Therefore, a parametric
representation is required that will allow us to recognize and
synthesize learned movements regardless of the specific
desired effect, e.g., a pointing direction. The PHMM is such
a representation, because it takes the effect of movement as a
parameter and generates a new trajectory in movement space
that would lead to the desired effect. PHMMs are able to col-
lapse an entire HMM network into a single HMM if the var-
iations between the HMMs in the network are due to
different parameterizations.

In that respect, the main contributions of our work are
as follows:

u the definition of duality between the movement space
and object state space

u unsupervised learning procedure for detecting action
primitives

u learning of the underlying action grammar
u using PHMMs for modeling trajectories in movement

space based on their effect in the
object state space

u nonsupervised training of PHMMs
based on both the trajectories in
the movement space and the effect
of the movements on the object
state space

u using the PHMMs for action
synthesis, where a desired effect is
given such that a robot should
generate the necessary movement

u using PHMMs for action recogni-
tion, where we require to identify
the effect and action primitive
based on the observed movement.

Our concept is illustrated in Figure 2
and consists of the following steps:

1) Nonsupervised learning of action
primitives identifies the selection
of necessary action primitives. This
will be done by analyzing the

Generate Actions on
Robots and Recognize
Actions on Humans

Nonsupervised Learning of
Action Primitives

Build PHMM for
Each Action Class

Human Action
Classes According
to Their Effect on
Objects

Observations

Figure 2. The different steps involved in learning actions.

An open challenge in imitation
learning is to develop a compact and
flexible representation that can be
used for action planning, action
recognition, and action synthesis.

IEEE Robotics & Automation Magazine32 JUNE 2010

effects of the actions on objects rather than action trajec-
tories directly and store all the different performances of
each of the primitive in an action equivalence class. For
example, the equivalence class of the primitive reach for
object contains all the action trajectories of reach for an
object primitive.

2) To build a PHMM for each of these primitive classes
based on the movement trajectories and their effects.

3) To generate actions on robots that achieve a desired
effect and recognize action primitives and their effects
from the observed human actions.

In the following, we will discuss each of the steps in detail.
Each section contains its own experimental results.

Unsupervised Learning of Action Primitive
Classes According to the Effect on Objects
In this section, we discuss about unsupervised learning of
action primitives based on the effect of actions on objects.

In the first two steps in Figure 2, we evaluate the trajecto-
ries that are caused by the human actions in the object state
space. For this purpose, let an action be represented by a pair
½Hi

t Oi
t� of hand and arm trajectories Hi

t in movement space
M and object trajectories Oi

t in object state space O. While
the trajectories Hi

t inM are given by the marker locations on
the hand and arm and Oi

t are given by the object locations
and orientations, i denotes the different demonstrations (the
demonstrations are recorded using a VICON system and are
then automatically extracted from the continuous flow of
movements). We propose analyzing Oi

t to detect joint trajec-
tories across the different action effects, which give rise to a
set of primitives. This is an important difference from [22],
where human joint data are used to identify action primi-
tives. Having found primitives in O, i.e., a segmentation for
each of the Oi

t into these primitives, we are able to segment
Hi

t in the same way. If segmentation is done for all training
movements, we obtain sets of human trajectories, where each
set corresponds to a specific primitive (specific effect) inO. In
other words, each set is an equivalence class of human move-
ments modulo the effect these movements have on the
object state space (Figure 3).

As movements are considered to be equivalent if their
effect is the same, an obvious key question is how the quanti-
zation of the object state space should be done. For example,
if O is quantized in terms of object location, then, e.g., two
push movements are the same if the complete 3-D move-
ments relative to the initial object locations are the same up
to a predefined uncertainty. We have investigated in our
work a quantization that is based on the change of object
location in terms of Euclidean coordinates, which we call as
Euclidean quantization.

The approach in this section provides us with 1) sets of
movements that have the same effect on the object with
respect to the chosen quantization of O and 2) how precisely
the object states were changed by each of the movements. As
discussed in the “The PHMM” section, both pieces of infor-
mation will be used during unsupervised training of a PHMM
for each of the detected equivalence classes.

Modeling Object–Action Interactions as HMMs
In the first step, we analyze the trajectories Oi

t to identify the
primitives in the object state space O. Here, the trajectories in
O are six-dimensional (6-D), describing the location and ori-
entation of the object. All sequences Oi

t available in the data-
base are processed sequentially, and each one is modeled as an
ordered sequence of 6-D Gaussian mixtures. The trajectories
are divided into pieces of approximately equal length. Each of
the segments is modeled with a Gaussian, where the mean and
covariance are given by the mean and covariance of that seg-
ment. This way, we represent, initially, each trajectory in the
entire database as a left–right HMM [23] (see also “Sequence
Generation and Left–Right HMMs” section). We denote the
HMM-like model corresponding to the sequence Oi

t by
ki ¼ (Ai, Bi, pi), where the observation densities in B are given
by the Gaussians (each one associated with a single hidden
state), A models the transitions of a left–right model with an
even distribution, and p is given by the first state. To compute
the joint HMM kF , we start by setting kF ¼ k1. Then, kF is
modified and built recursively. For each of the subsequent
kk, k > 1, we do the following: compare the states of the
HMMs kF and kk pairwise by computing their distance using

DKL(QjjP) ¼ 1

2

log
jR1j
jR0j
þ tr(R�1

1 R0)

þ (l1 � l0)TR�1
1 (l1 � l0)� n

!
, (1)

where DKL is the Kullback-Leibler divergence of two Gaus-
sians N (x, l0, R0) and N (x, l1, R1). Here, n is the dimension
of the data, and all state pairs for which the distance falls below

Use Object Info
to Segment O

Find Primitives
in Object Space

Group Primitives
with Same Effect

in the Object Space

Segment and
Group Primitives
in Action Space

Object SpaceAction Space

Input Features
[H O]

Figure 3. The inputs H and O denote the action and object
features. The object features are first analyzed and
segmented. This is then used to extract the primitives in the
action space. The magenta boxes correspond to analysis in the
object state space, while the cyan box represents the analysis
in the action space.

Nonsupervised learning of action
primitives identifies the selection of

necessary action primitives.

IEEE Robotics & Automation MagazineJUNE 2010 33

a predefined threshold are merged into one state. The parame-
ters for the merged state are given by

R�1 ¼ xR�1
0 þ (1� x)R�1

1 , (2)

l ¼ R(xR�1
0 l0 þ (1� x)R�1

1 l1): (3)

Here, x is a weighting parameter that controls the contri-
bution from each of the states. We have used x ¼ 0:5 to
have equal weighting for each of the states. All transitions to
the merged state in kk are redirected to the modified state,
and all transitions from the merged state in kk are made to be
from the modified state. Each state in kk that is not merged
with a state is added to kF as a new state. At the end of this
process, we obtain a single HMM kF that models the entire
training set, and the hidden states are associated with the obser-
vation densities.

After this procedure, we have a single joint HMM kF that
models all data in the database. In the next step, we identify for
each trajectory Oi

t the optimal sequence of HMM states by
using the Viterbi algorithm. At this moment, all continuous
trajectories are turned into a discrete sequence of HMM states.

This is visualized in Figure 4 by a pushing-action example
and 3-D object-location parameters (the rotation parameters
were omitted here for clarity). While a human pushes an
object on a table, the 3-D object coordinates change. Figure 4
shows the pushes in four directions. To prevent location
dependencies, only the differences with respect to the initial
object state are considered. One can see that the Gaussians
close to the origin appear larger than those that are further
away. This reflects that, in the example training set, the varia-
bility of short movements was larger.

Grouping of HMM States into
Primitives in Object Space
The next step aims at detecting the action primitives. After hav-
ing sampled the trajectories into discrete state sequences, we are
able to interpret the discrete state sequences as strings. The action
primitives are the substrings that are either common to different
state sequence strings or are unique to a single sequence. Com-
mon substring selection is done by using a longest common sub-
string (LCS) approach that allows to find for two strings S and T
the longest string that is a substring to both S and T . Two steps
are required. 1) The HMMs have self-transitions that model the
variability in the execution speed of the actions. This means that
the discrete state sequences contain not only state changes but
also state repetitions. To assure invariance to speed, we discard in
the first step the state repetitions so that only the state changes
remain. 2) We can now consider the learning of the final primi-
tives from the discrete state sequences as an LCS problem [13],
which we solve using a dynamic programming approach [24];
see [13] for a detailed discussion of using the LCS for primitive
detection (Figure 5). This results in a small set of primitives inO,
and each original continuous trajectory Oi

t can now be repre-
sented as a sequence of primitives pi

1, pi
2 . . . pi

N .

Segmentation and Grouping in Movement Space
In a final step, we start from a sequence pi

1, pi
2 . . . pi

N of primi-
tives for the object state trajectory Oi

t and propagate the same
segmentation to the trajectory Hi

t inM. While doing this for
all trajectory pairs ½Hi

t Oi
t�, all pieces of Hi

t that inherit the same
(effect) primitive p are combined into one single equivalence
class p̂. In other words, all movements in the equivalence class
p̂ have the same effect on the object, while any two sequences
from two different equivalence classes p̂ and p̂0 have different
effects inO.

Experimental Results
We have tested our approach for learning action primitives on
a rerecorded version of the data set that was previously used by
Vicente et al. [12]. In their work, a data set of different human
arm actions doing manipulative tasks on objects in a table-top
scenario was recorded, and the ground truth was generated.
Figure 6(b) shows the experimental setup for the manipulative
arm actions on objects on a table top.

In Figure 1(a), one can see the different actions that were
recorded. Hand-selected action primitives were taken as
ground truth [see Figure 1(b)]. The aim of our experiment is
to learn these intuitive action primitives automatically. Since
the original data set of [12] was lacking data about the object

Figure 4. The ellipsoids show the contours of Gaussians used
to cover the 3-D location parameters of data. The lengths of
the trajectories indicate how much distance the object was
moved.

1 2 3 4

1 2 3 4

5 6 7 8 9 10 1 2 3 4 1112

Figure 5. On the top, we have two state sequences. The LCS
is (1 2 3 4), as computed by the LCS approach. The final set of
primitives is in this case (1 2 3 4), (5 6 7 8), (9 10), and (11 12).

IEEE Robotics & Automation Magazine34 JUNE 2010

state, we rerecorded the data set using our VICON motion
capture system, with markers placed on the human as well as
object. In addition, the new data set provides a larger variabil-
ity in object location as well as four different directions for the
push and move movements (up, down, left, and right). The dif-
ference between move and push in our data set is that the push
movement moves the object on the table while the move action
lifts the object from the table to place it at a new location. Fig-
ure 6(a) shows the setup for the new recording that includes the
object–action interaction. As object states, we use the object
locations and object orientation. For the Euclidean quantization
of O, the finally recovered action primitives are shown in Fig-
ure 7. As can be seen, we recover the move and push primitives
along the four different directions available in the training data
and the rotate, approach, and remove primitive. The rotation
movement was identified correctly, but the grasping movement
could not be detected. The reason for this is that the grasp action
by itself does not induce any object state change in our training
data. The boxes in Figure 7 denote the primitives in the object
space and the induced primitive in the movement space. If we
consider the box for push right, it has three primitives, each of
which corresponds to the repetitions in our training data in
which the object was pushed to the right at three different dis-
tances. To represent the largest distance moved in this case, we
need three primitives, namely, P1, P2, and P3, and for the next
shorter distance, we need only P1 and P2, and the shortest dis-
tance moved is represented by P1.

Building PHMMs for Each
Primitive Class
In the previous section, we have pre-
sented an approach that can detect a set of
action primitives from a set of observed
human movements. The result of the
learning process was 1) a set of equiva-
lence classes with arm movements that
are equivalent in terms of their effect on
the object state space and 2) the precise
effect of each of these movements on the
object state. For example, using polar
quantization, all push and move move-
ments were clustered into the same class.
Each arm movement, f (t), is described in
movement space through trajectories f i(i)
of 3-D locations (i.e., the shoulder, the
elbow of the right arm, the wrist, the
index finger, its knuckle, and the thumb
of the right hand) combined as f (t) ¼
(f i(i))

6
i¼1. Each movement is stored with

its precise effect /, e.g., the initial location
x0 of the object and the final location x1.

In this section, we introduce PHMMs
[1] as a compact representation that
allows to model each action primitive
(equivalence class) in a way that can be
used for synthesizing actions with a
given desired effect on an object or for

recognizing the primitive and its effect based on the visual and
even monocular observation of human movement.

HMMs [23] are a common tool for statistically representing
movements as trajectories. However, they do not have the
ability to model these trajectories in terms of an effect they
should cause. If one needs to use HMM to recognize the
pointing direction, one would have to use several HMMs, one
HMM for each specific direction. PHMMs, on the other
hand, are able to identify the pointing movement as well as
direction of pointing.

Approach

Push Left

P8P9

Retrieve

Rotate

P12

P7 P6 P5 P4

Push Down

P20P21P23 P22

Move Down

Push Up

Move Up

Move Left Move Right

Push Right

P14 P15P13

P2 P3P1

P18P19

P16 P17

P10 P11

Figure 7. The results for our data set. Each of the actions (recorded in sequence)
starts by approaching the object, then it performs a manipulative primitive and ends
by retrieving the hand. Each of the squares represents a primitive in the object state
space and the corresponding primitive inM.

(a) (b)

Figure 6. (a) The markers are attached to both person and
object. The object can be moved from any position to any
other position on the table. (b) Experimental setup in [12]. The
table is marked with locations where the object can be moved
around. Object positions are not recorded.

IEEE Robotics & Automation MagazineJUNE 2010 35

In the following sections, we introduce the PHMMs and
discuss how they can be used for representing the action prim-
itives such that they can be used for action recognition and
synthesis.

The PHMM
PHMMs [1] are an extension of HMMs [23], [25] through
latent parameters / ¼ (/1, . . . , /N), which model a system-
atic variation within each action class. We shortly review the
main principles of HMMs and then extend it into PHMMs in
the following sections.

The HMM
A HMM is a generative model. It is a finite state machine
extended in a probabilistic manner. For a HMM k ¼ (A, B, p),
the vector p ¼ (pi) and transition matrix A ¼ (aij) define the
prior state distribution of the initial states i and the transition
probability between the hidden states. In continuous HMMs,
the observation densities of each hidden state are described by
density functions bi(x), which are in our context multivariate
Gaussian densities bi(x) ¼ N (xjli, Ri). The HMM parameters
can be estimated through the Baum-Welch algorithm [23] for
a set of training sequences.

Sequence Generation and Left–Right HMMs
An output sequence X ¼ x1 . . . xT can be drawn from the
model by generating a step-by-step state sequence Q ¼
q1 . . . qT with respect to the initial probabilities pi and the
transition probabilities aij and, drawing for each state qt , the
output xt from the corresponding observation distributions
bi(x). Generally, there is no unique correspondence between
an output sequence X and a state sequence, as different hidden
state sequences can generate the same output sequence X.
This seems to be a rather poor approach to generate a good
prototype movement from the model. To overcome this
problem, we use a left–right model [23]. A good prototype
can then be generated by taking the sequence means l1 . . . lT
and interpolating between the means with respect to the
expected time durations encoded in the state transitions.

The Parametric Extension to HMMs
A PHMM [1] k/ assumes that the training data can be mod-
eled using observation densities bi(x) ¼ N (xjli, Ri) that are
functions of a gesture parameter /: b/

i ðxÞ ¼ N (xjl/
i , Ri). In

other words, for PHMMs, the means l
/
i ¼ f i(/) of the obser-

vation probability density functions (pdfs) b/
i are functions of

the parameter /, and the functions f i(/) are approximated for
each state i separately in the training process. The dimensional-
ity of / has to match the degree of freedom of the gesture. For

example, for an approach action, the parameter / is given by
the location of the object to be grasped. To model the
approach action to location /, all observation pdfs b/

i of the
PHMM are adapted appropriately. For a move action that
starts at an initial object location A and ends at a final object
location B, the parameter / contains the initial location A as
well as the final location B.

In [1], a linear as well as a more general nonlinear model are
used to model f i(/). In the linear case, each function f i(/) is of
the form

li ¼ �li þW i/, (4)

where the matrices W i describe the linear variation / from
the average gesture trajectory �li. In the more general nonlin-
ear case, a neural network, which is trained to approximate a
more general nonlinear dependency on /, is used for each
state i. For both models, the training procedures are generally
supervised and are similar to the classical Baum-Welch
approach for HMMs, except for, e.g., in the linear case, the
additional parameters W i in (4) that must be estimated, and
the values of / must be given for each training sequence. In
our case, the parameters / are automatically provided through
our unsupervised primitive learning approach from the
“Unsupervised Learning of Action Primitive Classes Accord-
ing to the Effect on Objects” section. Recall that the result of
the primitive learning approach was 1) sets of movements that
all have the same effect on the object with respect to the
chosen quantization of O and 2) how precisely the object
states were changed by each of the movements. This means,
while the movements in each equivalence class are used for
training the PHMM, the initial and final object states for each
of the movement are available and provide the necessary para-
metric data for PHMM training.

During primitive learning, the approach actions are suffi-
ciently specified by the location of the object to be grasped,
because at the beginning of each approach action, the human
arm was always in a resting position in which it is simply hang-
ing down from the shoulder. On the other hand, the move
action was specified by two parameters given by the initial and
final object positions. To use a single learning method for the
two types of primitives, we changed the approach movement
into a two-parameter movement. To do that, we used the
hand location instead of object location: while the move
action uses two object locations, we gain an additional loca-
tion parameter at the beginning of the approach movement
and an additional location parameter at the end of the remove
movement by considering the hand location. This way, all
primitives become biparametric, which allows us to use a sin-
gle learning approach for all primitives.

To decide between a linear and nonlinear model, one
can use the accuracy of the trained PHMM in resynthesiz-
ing the demonstrations as an indicator. In this article, we
used a linear model to model the parametric variability
between the movements, because the linear model was
sufficiently precise to model the movements in our data-
base. For learning the PHMM parameters, we used an

PHMMs are able to synthesize
movements that are meant
to generate a specific effect
on the scene.

IEEE Robotics & Automation Magazine36 JUNE 2010

extended version of Baum-Welch approach. In this work,
the number of PHMM states was chosen through cross-
validation. One possibility for choosing the number of
states automatically is using the same number of states as
used during the detection of action primitives.

Synthesis with PHMMs
The procedure for generating a particular sequence with
parameter / is closely related to the method explained in the
“Sequence Generation and Left–Right HMMs” section. The
difference here is that one generates a specific movement for a
parameterization /: given /, one first computes the means
l

/
1 . . . l/

T for the observation densities b/
i . This is done by

evaluating the functions fi (/) that were learned in the training
process (“The Parametric Extension to HMMs” section).
Then, as all the observation densities bi are specified, a good
prototype can be synthesized as described in the “Sequence
Generation and Left–Right HMMs” section. Once the
parameter / is defined, the new means are calculated.

Recognition with HMMs and PHMMs
Let us assume that we have a set of action classes K and, for
each class k 2 K, we trained a HMM kk. The maximum likeli-
hood approach can then be applied to identify X as the class k
that maximizes the likelihood

kML ¼ arg max
i

P(Xjki):

The likelihood can be efficiently computed using the for-
ward–backward procedure [23]. In the case of parametric
HMMs k

/k
k , the recognition becomes a two-step procedure.

First, one estimates for each model k
/
k the parameterization

/k that explains the movement in the maximum likelihood
sense best:

/ML
k ¼ arg max

/i

P(Xjk/i
i) (for each k 2 K):

This can be done using expectation maximization (EM), as
in [1], or with gradient descent, as in [2].

By adapting the parameters of the PHMM, this step reduces
the PHMM to a normal HMM, and the next step becomes
the same as in the case of general HMMs, i.e.,

kML ¼ arg max
i

P(Xjk/ML
i

i):

Synthesizing Actions with PHMMs
In this section, we evaluate how precisely the PHMMs are able
to synthesize movements and discuss how such movements
can be concatenated.

Precision of Synthesized Actions from PHMMs
As explained earlier, PHMMs are able to synthesize move-
ments that are meant to generate a specific effect on the scene.
For example, to move an object from location L1 to location

L2, the PHMM k/
move that was trained for the move action

primitive is parameterized with the parameter / ¼ (L1, L2). As
discussed in the “Synthesis with PHMMs” section, the param-
eter / affects the observation densities b/

i of the PHMM k/
move

in such a way that the first observation pdf b/
1 assures that the

hand is located at location L1, the last observation pdf b/
last posi-

tions the hand at the final location L2, and the observation pdfs
between the first and the last one are parameterized appropri-
ately to result in a smooth movement. In other words, the
movement trajectory will start at location L1 and end at loca-
tion L2, as these are hard constrained by the parameters.

The locations of the observation pdfs within the movement
trajectory and the functions li ¼ �li þW i / for each of the
observation densities are specified during the learning process
of the PHMM to assure an optimal approximation of the
training data in the least-squares sense. The interpolation of
the movement trajectory between the observation pdfs is
done linearly.

We have investigated how the quality of the action synthe-
sis depends on the number of training movements for the
PHMM and also how the synthesis quality depends on the
location of the object. The following two experimental results
for the approach movement are representative results in our
set of experiments: we have hand reduced the equivalence
class for the approach movement so that it contained 1) four
repetitions of approach movements to each of the four corners
of the table (2 3 2 grid) and 2) four repetitions of approach
movements to each of the four table corners and the middle of
the table sides (3 3 3 grid). Based on these reduced equiva-
lence classes, we trained the approach PHMM k

/
approach with

40 hidden states.
For testing, we synthesized movements for evenly distrib-

uted 5 3 7 locations on the table. For each of these locations,
four repetitions of the true human movements were available in
our movement data set. The table top has a size of 80 3 30 cm.

We calculated the error for each of the 5 3 7 as the distance
between the synthesized movement f (t) and the averaged
trajectory f (t) of the four available human performances.

Each human arm movement in our data set is specified by
six 3-D trajectories f (t) ¼ (f i(i))

6
i¼1, as mentioned in the

“Building PHMMs for Each Primitive Class” section. The
discrepancy e between the synthesized movement f (t) and
example movement, which was not used for training but
started and ended at the same location, is calculated as the
root-mean-square error between the synthesized movement
and averaged human movement f (t)

e ¼

ffi
1

6

X6

i¼1

Z
(f i(a(t))� f i(a(t)))2dt

�Z
a(t)dt

vuut , (5)

where a(t) and a(t) are warping functions.
The results are summarized for the 2 3 2 training grid in

Figure 8. For the 3 3 3 training grid, the results are very similar
to the 2 3 2 grid. The synthesis errors are approximately 1.8
cm. We have measured the root-mean-square error of the
human performances compared to the average human

IEEE Robotics & Automation MagazineJUNE 2010 37

performance. The result is plotted in Figure 8. By comparing
the two plots in Figure 8, one can see that the performance of
the PHMM is comparable with the human performance.

Concatenating Action Primitives
into Complex Actions Using PHMMs
If actions are defined in terms of action primitives and action
grammars, one has to concatenate the primitives to synthesize
complex actions, e.g., on a robot. We have investigated the
concatenation of primitives in a robot experiment. In this
experiment, a humanoid robot was meant to grasp objects on a
table and insert these objects into specific holes on the table (see
Figure 9). In our experimental setup, the object states were
given by their two-dimensional (2-D) locations on a table, and
the 2-D locations were identified through a camera above the
table. To generate movements on the robot, we used the three
action primitives: approach, move, and remove, as learned from
our primitive learning approach and represented by our
PHMMs. For robot control, the 3-D locations of the synthe-
sized arm trajectories f (t) ¼ f f i(t)g (see the “Building PHMMs
for Each Primitive Class” section) are mapped to joint angles.
To meet the scale of the robot, the marker locations are
rescaled. The joint angles are then calculated as least-squares
solution with the constraint that the end effector is at the loca-
tion that is required to achieve the effect /.

The robot task was a priori specified as an approach–move–

remove movement. During the execution, a human supervi-
sor advised the robot by pointing toward an object and toward
the hole into which the object should be dropped. These two
positions were estimated by vision. Using the initial robot
hand position P, the estimated object position S, and the esti-
mated location E of the hole, the robot generated and exe-
cuted the corresponding approach PHMM k

/1
approach with

/1 ¼ (P, S), the move PHMM k/2
move with /2 ¼ (S, E), and

finally the remove PHMM k/3
remove with /3 ¼ (E, P). The

continuity of the motion was ensured by specifying the end
position parameter of the previous PHMM as the starting posi-
tion parameter of the next PHMM. The results show (see Fig-
ure 9) that the generated movements are accurate enough to
grasp the object and put it into the hole. Implementational
details can be found in [26].

Recognition of Humans’ Actions
In this section, we discuss how to recognize an action primitive
and its intended effect from a visual monocular observation. In
detail, given a monocular visual observation of a human action,
we need to identify which PHMM models this observation
best and which parameterization it uses. From the PHMMs
and its parameterization, we can identify the primitive and,
given the action grammar from the “Unsupervised Learning of
Action Primitive Classes According to the Effect on Objects,”
section, we are able to recognize complex actions.

The most common approach to action recognition is to
assume that a person can be tracked and that the 3-D postures
of the person can be estimated. Once the time sequence of 3-
D body postures has been estimated, the sequence is evaluated,
commonly with a HMM [5] or possibly even with a PHMM,
as discussed in the “The PHMM” section. However, nonin-
trusive full-body motion capture is neither a trivial nor a
solved problem [5], [27], [28]. In this section, we propose a
completely novel, context- and object-driven approach,
where we acknowledge the fact that tracking, action recogni-
tion, and scene context are intertwined, i.e., the objects and
context constrain the actions and vice versa.

Recognition Through Tracking in Action Space
Instead of 3-D tracking approach with a subsequent action
recognition, we use our PHMMs to estimate directly which
action we are observing and which parameterization it has.

E
rr

or
 (

cm
)

1.5

1

0.5

5
4

3
2

1 1
2

3
4

80 cm30 cm

5
6

74
3

2
1 2

3
4

5
6

Figure 8. The image shows the root-mean-square error for the
synthesized grasping movement (red), where the PHMM was
trained on 2 3 2 training movements, and for the human
reference performance (blue).

Figure 9. The humanoid HOAP-3 grasps a specified object and drops it into a specified hole on the table.

IEEE Robotics & Automation Magazine38 JUNE 2010

As a consequence, while general 3-D human body tracking
needs to solve the parameter estimation problem in a very
high-dimensional parameter space of human joint configura-
tion, our approach to action recognition is concerned with a
much smaller parameter space that is defined by the conditional
density over the possible actions and parameters, given the con-
text and objects in that context. Since our PHMMs are genera-
tive models, we can generate the corresponding 3-D postures
from the PHMMs and deduce the 3-D human pose in the scene.

We call this approach tracking in action space, and we define
the action space as given by the aforementioned conditional
density. For example, in case of an approach action (“The
PHMM” section), the action space is essentially described by
the object location parameter, thus for tracking the approach
action, it is in principle sufficient to test for different location
parameters instead of searching in a high-dimensional action
space. But even that can be simplified, because we can constrain
these parameters if we are able to identify the object locations in
the scene.

To explain our framework in detail, let us consider the clas-
sical Bayesian propagation over time, as it is often used in the
context of general 3-D human body tracking [5]:

pt(xt) /
Z

P(I tjxt)P(xtjxt�1)pt�1(xt�1)dxt�1, (6)

where I t is the current visual observation, pt(xt) the pdf for
the random variable xt at time t, P(xtjxt�1) the propagation
step, and P(I tjxt) the likelihood measurement of I t , given xt.
Typically, the random variable xt specifies the body configu-
ration of a human model in joint angles, and the propagation
density is used to constrain the random variable xt to the most
likely pose values at each time step t [29], [30]. To compute
the likelihood P(I tjxt), a human body model is generated
using the pose values from xt and then compared with the
input image data I t . For evaluating (6), one commonly uses a
particle-based approach [5], [27], [31], [32].

In the tracking of action-space approach, the random
variable x is given as x ¼ (a, /, s), and it is used to control our
PHMMs: the parameter a identifies which PHMM it is, /

specifies the parameters of k/
a that need to be estimated, and s

is the timing parameter that specifies the current hidden state
within the PHMM.

The propagation density P(xtjxt�1) can be considerably
simplified. If we assume that a human finishes one action prim-
itive before starting a new one, the action identifier a is con-
stant until an action primitive is finished. The timing
parameter s changes according to the transition matrix of the
HMM, and the parameter / can also be assumed to be roughly
constant until a new action primitive is started.

Finally, the likelihood P(I tjxt) ¼ P(I tj(a, /, s)t) is com-
puted by first using the ath PHMM to generate the joint angles
of the 3-D human body pose for the parameter / and HMM
state s. In the second step, the generated joint angles are used
together with a 3-D body model to compute a projection of
the body onto the image plane, which we then compare with
the input image I t . When computing the observation

likelihood, we also make use of the standard deviations of
observation densities of the PHMM.

Action Tracking: PHMM-Based
In this section, we discuss the details of using PHMMs to
model the actions for action tracking. In our problem scenario,
we assume to have a set A ¼ f1, . . . ,Mg of actions, where
for each action a 2 A, a PHMM k/

a was trained.
In the “Sequence Generation and Left–Right HMMs” and

“Synthesis with PHMMs” sections, we have discussed how to
generate a sequence from a PHMM k/

a for action a and param-
eter /. Hence, for a given xt ¼ (a, /, s), P(xjx) ¼ b/

a,s(x)
defines the distribution of joint angles of 3-D body poses for
which b/

a,s(x) generates a corresponding 3-D human body
model [see Figure 10(a)], which is then matched against the
input image I t :

P(I t jxt) ¼
Z

x
P(I t j x)P(x jxt)dx: (7)

Finally, the propagation density P(xtjxt�1) is given as fol-
lows: s is propagated as mentioned earlier by the transition
matrix Aa of PHMM k/

a , and we allow / to change according
to a Gaussian distribution (Brownian motion [33]). The
variable a that specifies the action primitive is initially drawn
from a context-dependent distribution and is allowed to
change according to the grammar computed in the
“Unsupervised Learning of Action Primitive Classes Accord-
ing to the Effect on Objects” section.

(a) (b)

Figure 10. (a) We use an articulated human model, where the
skeletal structure is fleshed out by cones and superquadratics.
Each shoulder and elbow pair has four degrees of freedom.
(b) The edge image (model itself) is a smoothed gradient
image, serving as a distance to edge image.

Tracking in action space
is the application of

action primitives for tracking.

IEEE Robotics & Automation MagazineJUNE 2010 39

It should be noted that, for all action primitives and its cor-
responding PHMMs, the initial parameters are known and
given by the present tracking state. Only the final parameter
needs to be estimated. For example, the move primitive starts
at the present location of the hand that immediately defines the
first parameter for the move PHMM k/

move and it must, accord-
ing to our grammar in “Unsupervised Learning of Action
Primitive Classes According to the Effect on Objects” section,
coincide with the final parameter of the approach primitive.

It is worth having a close look at the estimation process for
xt : the entropy of the density pt reflects the uncertainty of the
detected parameters. The entropy usually decreases with every
new incoming image, and we use it as a measure of conver-
gence of the parameter estimation process.

Furthermore, by marginalizing over / and s, we can com-
pute the likelihood of each action a, and by marginalizing over
a and s, we can also compute the pdf of the action parameters
/. Figure 11 shows the progression over time for the
unknown parameters of the approach action. The red and
green lines show the most likely 2-D location parameters u
and v [for p ¼ (u, v)]. The dotted lines show their correspond-
ing uncertainties. The horizontal thin lines mark the corre-
sponding correct values for u and v. As one can see, the
uncertainty decreases with time, and after approximately 60
frames, the correct parameters are recovered. This is about the
time when the arm is fully stretched.

The Observation Model
We use an articulated model of the human body [Figure 10(a)].
The computation of the observation likelihood is based on the
edge information of the arm silhouette. Therefore, the contour
C of the projected articulated body model is extracted from the

rendered view for a pose x. We defined the observation func-
tion similar to a method described in [32] on a smoothed-edge
image [see Figure 10(b)], where the pixel values are interpreted
as distances to the nearest edge. The edge distance image is cal-
culated as follows. We calculate a normalized gradient image of
the observed image I, where the gray values above some
threshold are set to 1. The image is finally smoothed with a
Gaussian mask and normalized. This edge image is denoted by
G. The value of 1�G(c) of a contour pixel c can then be
interpreted as distance values between 0 and 1, where the value
1 corresponds to a pixel with no edge in the vicinity and 0 cor-
responds to a pixel on a strong edge. This distance interpreta-
tion is in some sense similar to the edge detection along the
normal, as used in [31], but faster to evaluate.

The observation function is computed as

P(I j x) ¼ exp � 1

2r2

1

jCj
X
p2C

(1�G(p))2
()

, (8)

where C is the model’s contour and G is the edge image. An
extension to multiple camera views is straightforward:

P(I j x) ¼ exp � 1

2r2

X
i

1

jCij
X
p2Ci

(1�Gi(p))2
()

, (9)

where C and Gi are the corresponding contour sets and edge
images of each view i.

Experiments
We evaluated our approach on a monocular video data of the
same arm actions as in our movement data set [12], as
described in the “Unsupervised Learning of Action Primitive
Classes According to the Effect on Objects” section. Our test-
ing data is, however, different from the training data. The
scenario (actor and table top) in which the actions are per-
formed can be seen in the tracked sequence, Figure 12. As an
action model, we used linear PHMMs k/

a with / ¼ (u, v), as
trained in the “The PHMM” section.

The propagation over time is performed as described in the
“Action Tracking: PHMM-Based” section. We decrease the
diffusion of the Brownian motion of u and v in dependence of
the state number s. Our argument for the cooling down of the
Brownian motion over time is that, for the first frames, the
visual evidence for the right position / ¼ (u, v) is very weak,
which means that we should allow a large variety of possible
(u, v). But as visual evidence increases with time, we become
more certain about the correct (u, v), and we can successively
reduce the variance.

The sampling and normalization of image observations are
performed as in [31]. As described in the “The Observation
Model” section, the observation function is based on the eval-
uation of the edge information in the monocular video data
and the human body model for state xxti .

The images in Figure 12 show that the arm pose is (visually)
very accurately estimated. The following three factors

0 10 20 30 40 50 60
−20

−10

0

10

20

30

40

50

60

Frame Number

(c
m

)
O

ffs
et

s
an

d
S

ta
nd

ar
d

D
ev

ia
tio

ns

u−Parameter (Estimate)
v−Parameter (Estimate)

u−Parameter (Estimate)
v−Parameter (Estimate)

Figure 11. The figure shows the progression of the current
estimate of the action parameters u, v over time, where (u, v)
defines the pointed at position on table top and is measured
as an offset in centimeter to the center of the active table-top
region. In the images of Figure 12, the variables correspond to
the horizontal (u) and vertical direction (v). The dotted lines
show the standard deviation for u and v.

IEEE Robotics & Automation Magazine40 JUNE 2010

emphasize the capabilities of our tracking in action-space
approach: all information are gathered from a monocular
video based on a single feature type (edge information). The
edge images (especially, the first part of the sequence) contain
a lot of clutter, and the silhouette of the arm is not segmented
accurately. Besides posture estimation, one can see in Figure
12 that the estimation of the action parameters (corresponding
to the position indicated through the small red dot) converges
in this example slowly to the true parameters of the action
when the arm approaches the table top: as one can see in Fig-
ure 12, there is only little visual evidence in the middle of the
sequence about the pointing location that causes the conver-
gence to be slow in this example.

To evaluate the quality of posture estimation, we recorded
the joint positions in parallel with a marker-based motion cap-
ture system. The root-mean-square error of the three joints
positions (shoulder, elbow, and finger) over the whole
sequence, as shown in Figure 12, is 3.3 cm. The component-
wise averaged error is only 0.4 cm. This error was within the
natural human action variation, as it was observable in the
training data. During our experiments, we have used 400 par-
ticles, and we have reached a processing speed of 10 Hz on an
average PC with an average graphics card.

Conclusions
We have presented a complete framework for learning action
primitives and for representing them with PHMMs for synthe-
sizing and recognizing actions. The learning algorithm was
tested using a set of actions on objects. We are able to recover a
simple primitive structure for the actions that are similar to the
natural language description for the actions we have considered.
Primitive-based modeling of actions enables us to define a

hierarchy of actions by converting continuous observations into
discrete symbols. Several authors have represented actions in a
hierarchical manner [34]–[36]. These works require the manual
modeling of atomic movements/primitives. The contribution
of our work is that we perform this segmentation automatically
and unsupervised, while the entire learning process is governed
by only two parameters, the distance between the Gaussians
and the threshold for (1). Even though we have based our
discussion on the data from [12], tests with other data sets sug-
gest that our approaches generalize well. Important further
investigations will concern the quantization of the object state
space and possible different generalization levels.

The experimental results from [37] suggest that action per-
ception and execution of motor primitives are connected
through objects. There are also further studies from experi-
mental psychology that confirm the role of objects in action
understanding [38], [39]. In this article, we have exploited
object information to learn action primitives.

Even though object detection and classification literature
are quite large (for overview, see [40]), there are not many
attempts to combine it with action modeling [41], [42]. In
[41], HMMs are combined with object context to classify
hand actions. Image-, object-, and action-based evidence were
used to label and summarize activity and also to identify
objects. They define a generalized class model to describe
objects. Actions associated with each class were represented
using trained HMMs. The states of such HMMs were con-
nected to the regions through which the object moved for a
particular action. Our approach learns such a model for mod-
eling actions automatically. A Bayesian model was used in [42]
for modeling human–object interactions. Some of the condi-
tional probabilities of this model were calculated using trained

(a)

(b)

Figure 12. The images show a person reaching for a certain position on the table. (a) The edge image for the likelihood
measurement and (b) the corresponding camera image with the detected arm pose superimposed. The current estimate of the
position is indicated by the red point on the table.

IEEE Robotics & Automation MagazineJUNE 2010 41

HMMs. These approaches require a good initial training of
action models for later recognition even though a known
structure is assumed. Our work goes beyond the state of the
art in this area, since it exploits object knowledge in the primi-
tive learning process.

Our work relates to the recent work of [11], where a hier-
archical tree structure is incrementally formed representing the
motions learned by the robot. One of the issues raised is that each
node representing a motion primitive may differ from those seg-
mented in an off-line, supervised process. By integrating the
object knowledge in the learning process, the resulting primitives
are more similar to the ones generated in an off-line process.

Other robotics researchers used HMMs to represent move-
ment primitives [43]–[45]. Unlike these approaches, we sug-
gest a parametric version of HMMs, which are called
PHMMs. PHMMs are essential for the generation of robot
movements that can be applied to objects.

One might argue that our approach cannot be used for
general action synthesis and recognition, because the space of
possible actions will always be too limited.

However, following the arguments in [7], [8], [10], [46],
and [47] that human actions are composed of motor primitives
similar to human speech being composed out of phonemes,
we believe that our limited action space can be generalized to
span the space of action primitives. Stochastic action grammars
could be used as in [10], [47], and [48] to model more complex
actions. Furthermore, [47] explains how a language for human
actions can be generated based on grounded concepts, kinetol-
ogy, morphology, and syntax.

Acknowledgments
This work was partially supported by EU through grants
PACO-PLUS and FP6-2004-IST-4-27657.

Keywords
Action grammars, action primitives, human body tracking,
motor primitives, parametric hidden Markov models.

References
[1] A. D. Wilson and A. F. Bobick, “Parametric hidden Markov models for

gesture recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21,
no. 9, pp. 884–900, 1999.

[2] D. Herzog, V. Krueger, and D. Grest, “Parametric hidden Markov models
for recognition and synthesis of movements,” in Proc. British Machine Vision
Conf., Leeds, U.K., Sept. 1–4, 2008, pp. 163–172.

[3] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends Cogn.
Sci., vol. 6, no. 11, pp. 481–487, 2002.

[4] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng, “Discovering
optimal imitation strategies,” Robot. Autonom. Syst., vol. 47, no. 2–3,
pp. 69–77, 2004.

[5] V. Kr€uger, D. Kragic, A. Ude, and C. Geib, “The meaning of action: A
review on action recognition and mapping,” Adv. Robot., vol. 21, no. 13,
pp. 1473–1501, 2007.

[6] J. Kober, B. Mohler, and J. Peters, “Learning perceptual coupling for
motor primitives,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Sys-
tems, 2008, pp. 834–839.

[7] G. Rizzolatti, L. Fogassi, and V. Gallese, “Neurophysiological mechanisms
underlying the understanding and imitation of action,” Nat. Rev., vol. 2,
pp. 661–670, Sept. 2001.

[8] G. Rizzolatti, L. Fogassi, and V. Gallese, “Parietal cortex: From sight to
action,” Curr. Opin. Neurobiol., vol. 7, no. 4, pp. 562–567, 1997.

[9] F. Mussa-Ivaldi and E. Bizzi, “Motor learning through the combination
of primitives,” Phil. Trans. R. Soc. London B, vol. 355, no. 1404,
pp. 1755–1769, 2000.

[10] G. Guerra-Filho and Y. Aloimonos, “A sensory-motor language for
human activity understanding,” in Proc. 6th IEEE-RAS Int. Conf. Human-
oid Robots, Genova, Italy, Dec. 4–6, 2006.

[11] D. Kulic and Y. Nakamura, “Scaffolding on-line segmentation of full
body human motion parameters,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, 2008, pp. 2860–2866.

[12] I. S. Vicente, V. Kyrki, and D. Kragic, “Action recognition and under-
standing through motor primitives,” Adv. Robot., vol. 21, no. 15,
pp. 1687–1707, 2007.

[13] S. Baby and V. Krueger, “Primitive based action representation and rec-
ognition,” in Proc. Scandinavian Conf. Image Analysis, Oslo, Norway, June
15–18, 2009, pp. 31–40.

[14] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action-initial steps towards artificial cognition,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Sept. 2003, vol. 3,
pp. 3140–3145.

[15] S. Griffith, J. Sinapov, M. Miller, and A. Stoytchev, “Toward interactive
learning of object categories by a robot: A case study with container and
non-container objects,” in Proc. IEEE 8th Int. Conf. Development and Learn-
ing (ICDL), June 2009, pp. 1–6.

[16] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning
object affordances: From sensory-motor coordination to imitation,” IEEE
Trans. Robot., vol. 24, no. 1, pp. 15–26, Feb. 2008.

[17] H. Kozima, C. Nakagawa, and H. Yano, “Emergence of imitation medi-
ated by objects,” in Proc. 2nd Int. Workshop on Epigenetic Robotics, 2002,
pp. 59–61.

[18] M. Dogar, M. Cakmak, E. Ugur, and E. Sahin, “From primitive behav-
iors to goal-directed behavior using affordances,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS), 2007, pp. 729–734.

[19] M. Lopes and J. S. Victor, “Visual learning by imitation with motor rep-
resentations,” IEEE Trans. Syst., Man, Cybern., vol. 35, no. 3, pp. 438–

449, June 2005.
[20] J. Sinapov and A. Stoytchev, “Detecting the functional similarities

between tools using a hierarchical representation of outcomes,” in Proc. 7th
IEEE Int. Conf. Development and Learning, (ICDL), Aug. 2008, pp. 91–96.

[21] H.-K. Lee and J. Kim, “An HMM-based threshold model approach for
gesture recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 21,
no. 10, pp. 961–973, Oct. 1999.

[22] D. Kuli�c, W. Takano, and Y. Nakamura, “Incremental learning, clustering
and hierarchy formation of whole body motion patterns using adaptive hid-
den Markov chains,” Int. J. Robot. Res., vol. 27, no. 7, pp. 761–784, 2008.

[23] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov
models,” IEEE ASSP Mag., vol. 3, no. 1, pp. 4–15, Jan. 1986.

[24] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” J. ACM, vol. 24, no. 4, pp. 664–675, 1977.

[25] X. Huang, Y. Ariki, and M. Jack, Hidden Markov Models for Speech Recog-
nition. New York, NY, USA: Columbia Univ. Press, 1990.

[26] D. Herzog, A. Ude, and V. Krueger, “Motion imitation and recognition
using parametric hidden Markov models,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots (Humanoids), Daejeon, South Korea, Dec. 1–3, 2008,
pp. 339–346.

[27] T. Moeslund, A. Hilton, and V. Krueger, “A survey of advances in
vision-based human motion capture and analysis,” Comput. Vis. Image
Understand., vol. 104, no. 2–3, pp. 90–127, 2006.

Primitive-based modeling of actions
enables us to define a hierarchy of
actions by converting continuous
observations into discrete symbols.

IEEE Robotics & Automation Magazine42 JUNE 2010

[28] M. Lee and R. Nevatia, “Human pose tracking in monocular sequences
using multilevel structured models,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 31, no. 1, pp. 27–38, 2009.

[29] H. Moon, R. Chellappa, and A. Rosenfeld, “3d object tracking using
shape-encoded particle propagation,” in Proc. Int. Conf. Computer Vision,
Vancouver, Canada, July 9–12, 2001, vol. 2, pp. 307–314.

[30] J. Gall, J. Patthoff, C. Schnoerr, B. Rosenhahn, and H.-P. Seidel,
“Interacting and annealing particle filters: Mathematics and recipe for
applications,” J. Math. Imag. Vis., vol. 28, no. 1, pp. 1–18, May 2007.

[31] M. Isard and A. Blake, “Condensation—Conditional density propaga-
tion for visual tracking,” Int. J. Comput. Vis., vol. 29, no. 1, pp. 5–28,
1998.

[32] J. Deutscher, A. Blake, and I. Reid, “Articulated body motion capture by
annealed particle filtering,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2000, vol. 2, pp. 126–133.

[33] D. MacKay, “Introduction to Monte Carlo methods,” Learning in
Graphical Models, M. Jordan, Ed. Cambridge, MA: MIT Press, 1999,
pp. 175–204.

[34] A. Bobick, “Movement, activity, and action: The role of knowledge in
the perception of motion,” Philos. Trans. Royal Soc. Lond., vol. 352,
no. 1358, pp. 1257–1265, 1997.

[35] C. Stauffer and W. Grimson, “Learning patterns of activity using real-
time tracking,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8,
pp. 747–757, 2000.

[36] N. Robertson and I. Reid, “Behaviour understanding in video: A com-
bined method,” in Proc. Int. Conf. Computer Vision, Beijing, China, Oct.
15–21, 2005, pp. 808–815.

[37] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition
in the premotor cortex,” Brain, vol. 119, no. 2, pp. 593–609, 1996.

[38] K. Nelissen, G. Luppino, W. Vanduffel, G. Rizzolatti, and G. A. Orban,
“Observing others: Multiple action representation in the frontal lobe,” Sci-
ence, vol. 310, no. 5746, pp. 332–336, 2005.

[39] B. N. Daniel and Michael E. J. Masson, “Gestural knowledge evoked by
objects as part of conceptual representations,” Aphasiology, vol. 20, no. 9-
11, pp. 1112–1124, Nov. 2006.

[40] S. Ullman, High-Level Vision: Object Recognition and Visual Cognition.
Cambridge, MA: MIT Press, July 1996.

[41] D. Moore, I. Essa, I. Hayes, and M. H., “Exploiting human actions and
object context for recognition tasks,” in Proc. 7th IEEE Int. Conf. Computer
Vision, 1999, vol. 1, pp. 80–86.

[42] A. Gupta and L. Davis, “Objects in action: An approach for combining
action understanding and object perception,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2007 (CVPR ’07), June 2007,
pp. 1–8.

[43] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied sym-
bol emergence based on mimesis theory,” Int. J. Robot. Res., vol. 23,
no. 4-5, pp. 363–377, 2004.

[44] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive imi-
tation in uni-manual and bi-manual tasks,” Robot. Autonom. Syst., vol. 54,
no. 5, pp. 370–384, 2006.

[45] T. Asfour, F. Gyarfas, P. Azad, and R. Dilmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” Int. J. Humanoid Robot.,
vol. 5, no. 2, pp. 183–202, 2008.

[46] O. Jenkins and M. Mataric, “Deriving action and behavior primitives
from human motion data,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, Lausanne, Switzerland, Sept. 30–Oct. 42002, pp. 2551–2556.

[47] G. Guerra-Filho and Y. Aloimonos, “A language for human action,”
IEEE Comput. Soc., vol. 40, pp. 42–51, May 2007.

[48] Y. Ivanov and A. Bobick, “Recognition of visual activities and interac-
tions by stochastic parsing,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, no. 8, pp. 852–872, 2000.

Volker Kr€uger received his Dipl.-Inf. degree and doctor’s
degree from Christian-Albrechts-Universit€at (CAU) Kiel,
Germany, in 1997 and 2000, respectively. He was a

postdoctoral fellow at the Center for Automation Research at
University of Maryland from 2000 to 2002. Since 2002, he has
been an associate professor at Aalborg University in Maryland.
He is with the Computer Vision and Machine Intelligence
Lab (CVMI) at the Copenhagen Institute of Technology
(CIT) of Aalborg University. He is a Member of the IEEE.
His research focuses on computer vision-based approaches for
learning and recognizing human actions.

Dennis L. Herzog received his master’s degree in computer
science from CAU in 2006. He is currently a Ph.D. student
with the CVMI at CIT, Copenhagen. His research activities
include the representation of parametric human movements,
vision-based tracking of human movements, and the synthesis
of human movements for robot control.

Sanmohan Baby received his M.Sc. degree in mathematics
from the Indian Institute of Technology, Madras, India. He is
currently pursuing his Ph.D. degree in computer science and
engineering at Aalborg University, Denmark, in the area of
computer vision. His research interests are in the areas of
computer and robot vision, especially in finding a grammatical
description of human actions for imitation learning in robots.

Aleš Ude studied applied mathematics at the University of
Ljubljana, Slovenia, and received his doctoral degree from the
Faculty of Informatics, University of Karlsruhe, Germany. He
was awarded the STA fellowship for postdoctoral studies in
ERATO Kawato Dynamic Brain Project, Japan. He has been
a visiting researcher at ATR Computational Neuroscience
Laboratories, Kyoto, Japan, for a number of years and is still
associated with this group. Currently, he is a senior researcher
at the Department of Automatics, Biocybernetics, and
Robotics, Jožef Stefan Institute, Ljubljana, Slovenia. He is a
Member of the IEEE. His research focuses on imitation and
action learning, perception of human activity, humanoid
robot vision, and humanoid cognition.

Danica Kragic is a professor of computer science at the
School of Computer Science and Communication at KTH
and acting director of the interdisciplinary research at Centre
for Autonomous Systems. In 2007, she received the 2007 IEEE
Robotics and Automation Society (RAS) Early Academic
Career Award. In 2008, she received the Swedish Foundation
for Strategic Research Future Research Leaders Award. Since
2006, she has been the chair for the RAS Technical Activity
Board for Computer and Robot Vision and a member of the
IEEE RAS Conference Editorial Board. She is a Member of
the IEEE. Her research interests include development of vision
systems and vision-based control; human–robot interaction;
and collaboration, object grasping, and manipulation.

Address for Correspondence: Volker Kr€uger, CVMI Lab,
Copenhagen Institute of Technology, Aalborg University,
Denmark. E-mail: vok@cvmi.aau.dk.

IEEE Robotics & Automation MagazineJUNE 2010 43

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

