
Robotics and Autonomous Systems 37 (2001) 115–125

Real-time visual system for interaction with a humanoid robot

Aleš Ude∗, Tomohiro Shibatac, Christopher G. Atkesona,d
a ATR-I, Information Sciences Division, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

b Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
c Japan Science and Technology Corporation, ERATO Kawato Dynamic Brain Project, 2-2-2 Hikaridai,

Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
d Carnegie Mellon University, Robotics Institute, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

In this paper, we describe a new real-time visual system that enables a humanoid robot to learn from and interact with
humans. The core of the visual system is a probabilistic tracker that uses shape and color information to find relevant
objects in the scene. Multiscale representations, windowing and masking are employed to accelerate the data processing. The
perception system is directly coupled with the motor control system of our humanoid robot DB. We present two case studies
of on-line interaction with a humanoid robot: mimicking of human hand motion and smooth pursuit of human head motion.
The generation of humanoid robot motion based on the position of relevant body parts is accomplished in real time. Both
studies are supported by experimental results on DB. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Real-time visual tracking; Humanoid robots; Mimicking; Smooth pursuit

1. Introduction

We are currently investigating ways to program
and interact with a humanoid robot. Movement im-
itation or mimicking and higher forms of learning
from demonstrations have been identified as a useful
tool for programming such robots [1,11]. To learn
from demonstrations and to interact with humans, the
humanoid must be able to perceive human motion.
While off-line processing of visual data is sometimes
acceptable for learning from demonstration [14,15], a
real-time perceptual system is essential for interaction
tasks. Once motion perception is seen as a continu-
ous process that interacts with the motor system, the
required standards of reliability become much more
stringent because failure in just one image frame
might cause the entire system to break down.

∗ Corresponding author.
E-mail address:aude@isd.atr.co.jp (A. Ude).

Our humanoid robot DB (see Figs. 3 and 5) has 30
degrees of freedom: seven for each arm, three for each
leg, two for each eye, three for the head and three for
the torso. Each eye of the robot’s oculomotor system
consists of two cameras, a wide-angle (100 degrees
view angle horizontally) color camera for peripheral
vision, and a second narrow view camera (24 degrees
view angle horizontally) providing a color image for
foveal vision. This setup mimics the foveated retinal
structure of primates. Such setup is essential for an
artificial vision system in order to obtain high resolu-
tion images of objects of interest while still being able
to perceive events in the peripheral environment. The
images from the wide-angle cameras are captured and
processed by standard PCs running the Windows NT
operating system. The extracted data is sent via serial
connections to a Power PC processor that generates
data needed by a motor control system.

The key issue when realizing a real-time motion
perception system is to avoid excessive interaction

0921-8890/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(01)00153-1

116 A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125

between the pieces of data in both the time and spatial
domains. A practical system for perceiving human mo-
tion should be able to deal with complex environments
and at least moderately changing lighting conditions.
Probabilistic approaches are the prime candidates to
explore because they allow us to prevent excessive data
interaction through independency assumptions and be-
cause continuous probabilities associated with image
pixels prevent the perceptual algorithms from being
brittle with respect to the variations in the background
and lighting conditions. By putting the motion track-
ing and estimation problems in a Bayesian setting, we
can utilize a maximum likelihood approach to find the
relevant objects and to recover the observed motion.
This should enable reliable motion tracking once the
real-time process is allowed to run.

2. Motion perception system

The goal of our real-time visual system is to per-
ceive motion of body parts such as hands and head
as well as objects that the observed person is manip-
ulating. The most important part of the system is a
real-time tracker, which we present in this section. We
also consider some important issues such as 2D shape
estimation, occlusion reasoning, and 3D estimation of
positions of the tracked entities using stereo.

2.1. Probabilistic framework

We represent the observed environment by a num-
ber of random processes. Each entity to be tracked
is represented by one process. Let us denote the
probability that a pixel positioned atu = (u, v) hav-
ing color intensityIu was generated by the process
Θk, k = 1, . . . , K, by P(Iu, u|Θk). We also introduce
two additional processes: the optional background
processΘK+1, which describes the stationary back-
ground (useful only for fixed cameras), and the outlier
processΘ0, which models the data not captured by
other processes. Assuming that every pixel stems
from one of the mutually independent processes
Θk, k = 0, . . . , K +1 (closed-world assumption), we
can write the probability that colorIu was observed
at locationu using the total probability law

P(Iu, u|Θ) =
K+1∑
k=0

ωkP(Iu, u|Θk), (1)

where ωk is the prior (mixture) probability to ob-
serve the processΘk,

∑K+1
k=0 ωk = 1, andΘ = {Θ0,

Θ1, . . . , ΘK+1}. Finally, neglecting the correlation
of assigning neighboring pixels to processes, we can
evaluate the overall probability to observe the imageI:

P(I) = P(I|Θ) =
∏
u

P(Iu, u|Θ). (2)

At each time step, we would like to determine
(Θ1, . . . , ΘK, ω0, ω1, . . . , ωK+1) so that the likeli-
hood (2) is maximized. Instead of maximizing (2), it
is often easier to minimize the negative log likelihood

L(Θ, ω) = −log(P(I|Θ))

= −
∑
u

log(P(Iu, u|Θ)), (3)

whereω = (ω0, . . . , ωK+1). Taking into account that
mixture probabilities should add up to 1, the corre-
sponding Lagrangian function is given by

L̃(Θ, ω, λ)

= −
∑
u

log(P(Iu, u|Θ)) + λ

(
K+1∑
k=0

ωk − 1

)
. (4)

At a local extremum, we have

0= − ∂

∂Θl

L̃(Θ, ω, λ)

= ∂

∂Θl

∑
u

log

(
K+1∑
k=0

ωkP(Iu, u|Θk)

)

=
∑
u

ωl(∂/∂Θl)P(Iu, u|Θl)∑K+1
k=0 ωkP(Iu, u|Θk)

=
∑
u

pu,l

∂

∂Θl

log(P(Iu, u|Θl)), (5)

wherel = 1, . . . , K, andpu,l is the probability that
pixel u stems from thelth process

pu,l = ωlP(Iu, u|Θl)∑K+1
k=0 ωkP(Iu, u|Θk)

. (6)

Similarly, we obtain

0 = ∂

∂λ
L̃(Θ, ω, λ) =

K+1∑
k=0

ωk − 1, (7)

A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125 117

0= ∂

∂ωl

L̃(Θ, ω, λ)

= − P(Iu, u|Θl)∑K+1
k=0 ωkP(Iu, u|Θk)

+ λ

= − 1

ωl

∑
u

pu,l + λ. (8)

The parameters describing the observed environment
should be calculated by solving Eqs. (5), (7) and (8).
These equations can only be solved iteratively. A good
iterative approach for this problem is provided by the
EM algorithm, in which this is done by first calculating
the probabilitiespu,l using the current estimate forΘ

andω (the expectation step) and then solving Eqs. (5),
(7) and (8) as ifpu,l were constants independent ofΘ

(the maximization step). This process is repeated until
convergence.

The expectation step consists of calculating the
probabilities (6) and is theoretically trivial, although
it takes most of the processing time in practice. In
the following, we concentrate on the maximization
step, i.e. the calculation of the unknown parameters
given the probabilitiespu,l . λ, ω0, . . . , ωK+1 can be
calculated directly regardless of the choice of prob-
ability distribution for Θ. Taking into account that∑K+1

l=0 pu,l = 1 (see Eq. (6)), the solution to Eqs. (7)
and (8) turns out to beλ = N , whereN is equal to
the number of pixels, and

ωl = 1

N

∑
u

pu,l , l = 0, . . . , K + 1. (9)

Intuitively, ωl is proportional to the percentage of
pixels stemming from the processΘl .

To calculate the rest of the parameters, we must first
decide how to model the process distributionsΘk. Re-
searchers have used various features when modeling
images by mixture models such as, e.g., intensity vari-
ations [6], color [2,9], optical flow combined with the
spatial coherence [3], and 3D ellipsoidal models [7].
The distribution of these features is usually modeled
as Gaussian, which significantly simplifies the calcu-
lation of logarithms of probabilities in Eq. (5).

Our approach uses shape and color mixtures (or
sometimes color intensity mixtures) to evaluate the
probability that a pixel belongs to a certain process.
Assuming that these properties are independent of
each other, we can write

P(Iu, u|Θl) ∼ p(Iu|Θl)p(u|Θl). (10)

In many cases, for example, when tracking body parts,
the 2D shape of the tracked objects is roughly ellip-
soidal and we can estimate it by the center of the
object’s imagexl and by the covariance matrixΣl of
pixels contained in it. The shape part of the probability
that a pixelu belongs to a blob can then be estimated
as

p(u|Θl) = 1

2π
√

det(Σl)

× exp
(
−1

2(x − xl)
TΣ−1

l (x − xl)
)

. (11)

Assuming that the object’s texture consists of a finite
number of colors, we can model the color probabilities
by a Gaussian mixture model

p(Iu|Θl) =
Kl∑

k=1

ωl,kp(Iu|Il,k, Γl,k), (12)

where
∑Kl

k=1 ωl,k = 1 and

p(Iu|Il,k, Γl,k)

= 1√
(2π)2 or 3det(Σl)

× exp
(
−1

2(Iu − Il,k)Γ
−1
l,k (Iu − Il,k)

)
. (13)

We experimented both with colors and color intensi-
ties, therefore 2 or 3 in Eq. (13) depending on the
dimension ofIu.

The adaptation of colorsIl,k and their covariances
Γl,k within the EM algorithm makes the tracking un-
stable, therefore we keep them constant. The necessary
parameters are determined in an off-line initialization
phase. This means that

∂

∂Θl

log(p(u|Θl)p(Iu|Il,k, Γl,k))

= ∂

∂Θl

log(p(u|Θl)). (14)

The parameters to be estimated are the objects’ posi-
tionsxl and covariancesΓl,k and sometimes the color
mixture probabilitiesωl,k. Writing

pu,l,k = ωl,kp(Iu|Il,k, Γl,k)∑Kl

k=1 ωl,kp(Iu|Il,k, Γl,k)
, (15)

118 A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125

we can transform Eq. (5) into

0=
∑
u

pu,l

∂

∂Θl

log(P(Iu, u|Θl))

=
∑
u

pu,l

Kl∑
k=1

pu,l,k

∂

∂Θl

log(p(u|Θl)p(Iu|Il,k, Γl,k))

=
∑
u

pu,l

∂

∂Θl

log(p(u|Θl)). (16)

It is well known that these equations can be solved
by computing the weighted mean and covariances of
image pixels withpu,l being used as weights.

The reasoning when estimating the color mixture
probabilitiesωl,k is similar as in the case of the esti-
mation of blob mixture probabilitiesωl . The result is

ωl,k = 1∑
upu,l

∑
u

pu,lpu,l,k

= 1

Nωl

∑
u

pu,lpu,l,k, (17)

whereωl are thenewlycalculated blob mixture prob-
abilities. This completes the basic algorithm used by
our tracker.

2.2. Real-time considerations

The resolution of color images, which are captured
by our system at 30 Hz, is 320×240. This means that
we need to process ca. 6.6 MB of data every second.
One way to reduce the computation time would be to
model properties of the tracked entities by a simpler

Fig. 1. Observing the devil sticking: (left) input; (right) result. Five blobs were tracked simultaneously.

probability distribution than the normal distribution.
This was done in [5], although in a somewhat differ-
ent setting. We decided rather to stay with the normal
distribution and to reduce the computation time by
narrowing the areas in the image in which the proba-
bilities need to be evaluated.

The regions of interest are first determined by win-
dows located at the previous or predicted position of
each tracked object. This works fine for compact ob-
jects whose minor and major axes do not differ too
much. But a window is only a poor approximation
for elongated objects such as sticks in Fig. 1. There-
fore, we also generate an ellipsoidal mask around the
tracked object. The mask is specified by a binary im-
age having 1 at pixels where the probabilities need to
be evaluated.

To further reduce the computation time, we process
images at two different resolutions. First we run the
EM algorithm on the reduced resolution image, i.e.
160× 120. In our experiments, the window and the
mask size are typically set to be 1.75 to 2 times larger
than the minimal bounding box containing the object.
The initial position is taken to be the previous or the
predicted position, but the initial object size is set to
be 1.5 to 2 times larger than the object in the previ-
ous image so that also rapidly moving objects can be
tracked. After one or two iteration steps, we increase
the resolution to the full resolution, but with the win-
dow and mask size reduced to only 1.25 of the initial
object size. The initial position and shape in this sec-
ond iteration are taken to be the position and shape
estimated at the lower resolution. Again, only one or
two steps of the EM algorithm are performed. For very

A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125 119

big objects, we do not carry out the full resolution it-
eration at all because their position and shape can be
determined reliably already in the lower resolution im-
age and because the processing of big objects become
very expensive at the full resolution.

We made use of the free Intel Image Processing
Library, which is available from http://developer.intel.
com/software/products/perflib/, to implement our sys-
tem. The library is optimized for various Intel Pen-
tium processors and is effective at taking advantage
of the MMX technology. It also includes support for
windowing and masking, thus making it suitable for
the development of real-time vision systems like ours.

2.3. Shape estimation

The size (the major and the minor axesa and b)
and the orientation(θ) of the blobB can be calculated
using the relationship between these parameters and
the covariance of the pixels within the blob. In the
ideal case, we can make a crisp decision whether a
pixel belongs to a blob or not. The covariance of the
pixels is then given by

1

πab

∫
B

[
(x − x0)

2 (x − x0)(y − y0)

(x − x0)(y − y0) (y − y0)
2

]
dx dy

= 1

πab
RT

(∫
x2/a2+y2/b2�1

[
x2 xy

xy y2

]
dx dy

)
R

= RT

[
1
4a2 0

0 1
4b2

]
R, (18)

where(x0, y0) is the center of the ellipse andR the
rotation matrix aligning the ellipse with the coordi-
nate axes. It follows that we can estimate the size and
the orientation of the tracked object by solving the
eigenvalue problem for the estimated covariance ma-
trix. The lengths of the major and the minor axes are
given by a = 2

√
λ1 and b = 2

√
λ2, whereλ1 and

λ2 are the larger and the smaller eigenvalue of the es-
timated covariance matrix, respectively. The rotation
matrixR (and from it the angleθ) is given by a matrix
with the corresponding eigenvectors in its columns.
These parameters can be used to generate masks for
efficient processing and to draw results into the cap-
tured images. This is how the result images shown in
this paper were generated.

2.4. Occlusion reasoning

Occlusions are common in real environments, espe-
cially when observing humans manipulating objects,
such as in Fig. 1. Occlusion reasoning usually requires
a prediction step, as for example, in [8], on the basis
of which we can determine which objects will overlap
in the next image frame and where.

In general, we have no information about the
physics of motion of the observed objects, therefore
we predict each parameter using a discrete second-
order dynamical system

x(t) = ax(t − 1) + bx(t − 2) + e(t), (19)

where x(t) is one of the parameters describing the
tracked object (position, orientation, shape) ande(t)

is the system noise, both given at timet . The un-
known parametersa andb are estimated using recur-
sive least-squares with a forgetting factor.

Once the object positions in the next frame are es-
timated, we can find the regions of occlusion. The de-
cision which of the two overlapping objects is in front
can be made using the estimated 3D positions (see
Section 2.5) or prior knowledge. If we predict that at
a certain pixel one object will overlap the other and if
in the next image frame we really find evidence that
the pixel was generated by the first object, then we as-
sign the estimated probability of the first object’s ap-
pearance (10) not only to the object itself, but also to
the overlapped object. Since we have less confidence
that the second object really projects onto this pixel,
we assign only half of the actually estimated proba-
bility to the second object. If the probability that the
second object projects onto this pixel is greater than
the probability of the supposedly overlapping object,
then this probability is retained.

We can reason about occlusions only for objects
that are actually being tracked. We cannot say much
when one of the tracked objects is occluded by some-
thing that our system cannot perceive. This would re-
quire more complicated shape analysis that we want
to avoid. Our approach is based on the prediction of
future positions and can thus work only when the pre-
dictions are reliable. We have obtained good results
when using a high-speed camera as in Fig. 1. How-
ever, the approach becomes less reliable when tracking
rapidly moving objects with standard video cameras
as in our real-time system.

120 A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125

2.5. 3D position estimation

We use stereo to estimate the position of tracked
entities such as hand or head. We could take the center
of blobs in both images to estimate the 3D position
of a tracked body part. However, the two centers give
only a rather crude stereo correspondence because the
blobs found in the two images do not cover the same
areas on the body (see Fig. 2). This happens because
of differences in the viewing direction and because of
uncertainties in the estimation of shape.

Cross-correlation is a standard method for the cal-
culation of stereo correspondences. In our case, we
are not interested in generating a full depth map, but
only to estimate a 3D blob position. We take the cen-
ter of the blob in the left image as a starting point. A
box template around the blob center is extracted and
we attempt to find the best match in the right image
using zero mean normalized cross-correlation

ZNCCl,r (u, u + d)

= cov(Iu,l , Iu+d,r)√
var(Iu,l)

√
var(Iu+d,r)

, (20)

where

cov(Iu,l , Iu+d,r)

=
∑

∆∈T(Iu+∆,l − Iu,l)
T(Iu+d+∆,r − Iu+d,r)

(n − 1)
,

var(Iu) =
∑

∆∈T‖Iu+∆ − Iu‖2

(n − 1)
,

Fig. 2. The detected right human hand overlayed by the estimated blob as seen by left and right eye.

andIu is the mean color within the box around pixel
u. The maximum of correlation (20) is sought for in
a region defined by a slice of the image along the
epipolar line that lies within the right blob.

3. Experiment 1: Mimicking of hand motion

The first example on which we show the usefulness
of the developed vision system is mimicking of human
hand motion. The task of the humanoid is to move
its palm along the same type of path as the human
demonstrator. Fig. 3 shows an example of mimicking
a circular motion.

DB first records the initial demonstrator’s hand po-
sition as detected by his vision system. At the same
time, DB’s hand position is also recorded. As the
demonstrator starts moving his hand, DB determines
the demonstrator’s hand motion relative to the initial
hand position and generates points in his workspace
that result in the same path relative to the initial DB’s
hand position. These 3D points are transmitted to DB’s
control system in real time as the desired hand posi-
tions. The Cartesian hand positions are transformed,
again in real time, into DB’s joint angles using an in-
verse kinematics method described in [13]. The result-
ing joint angle positions are followed by DB’s con-
troller.

The main problem with this approach is that 3D
point positions are very noisy both because of the
uncertainties in our vision system and because of
vibrations caused by DB’s motion. To alleviate this
problem, we developed a method in which DB does

A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125 121

Fig. 3. DB mimicking hand motion. Every tenth frame from a video is shown.

not start moving along the demonstrated path imme-
diately but first gathers 1 second of data (30 points
on the demonstrated path). A smooth trajectory is
then generated using least-squares approximation
with B-splines. The applied B-spline basis should
have significantly less basis functions than there are
data points. In the example in Fig. 4, we used only
six basis functions for 1 second of data. In the next
second, DB starts moving its hand along the gener-
ated spline trajectory while continuing to monitor the
demonstrator’s motion. This process is repeated every
second and continuity constraints are enforced at the
edges. Such an approach seems to be natural because
also humans first try to figure out what is going on
before they start mimicking other people’s motion.

Another important issue is the choice of arm config-
uration. A humanoid arm is redundant with respect to
the mimicking of hand motion and there is an infinite

number of configurations that result in the same hand
motion. In the experiment in Fig. 3, the robot arm con-
figuration was different from the demonstrator’s arm
configuration when the mimicking began and this dif-
ference was retained throughout the mimicking ses-
sion. Ideally, the visual system should recognize the
initial arm configuration, but this is a formidable task
for visual processing, especially if it is to be per-
formed in real time. We are currently working on this
problem.

Mimicking arm motion with a humanoid has been
done before. The approach in [4] is also based on
the tracking of hand motion, but the authors map the
3D Cartesian motion into the joint space using some
predefined rules and without using any kinematic
information. While this can be effective in some
cases, it is rather arbitrary and cannot account for
all possible motions. In addition, their vision system

122 A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125

Fig. 4. Least-squares approximation of the generated trajectory with B-splines: (solid line) the smoothed trajectories; (dashed line) the
original trajectories.

is based on a more standard processing of visual
information.

4. Experiment 2: Smooth pursuit

Very accurate oculomotor control is required in
order to track a moving target in the viewfield of the
narrow angle foveal cameras. Primates can precisely
follow a target moving, e.g., at constant velocity or
in sinusoidal motion despite significant processing
delays in the visual pathway. Furthermore, their ocu-
lomotor control sometimes becomes predictive. This
cannot be achieved by simple visual feedback control.

In our system, smooth pursuit oculomotor control
is achieved by a biologically inspired and control
theoretically sound controller consisting of two cas-

caded learning modules. The goal of the first one is
to learn an inverse model of the oculomotor system,
while the other tries to learn the dynamics of a visual
target to predict the current target velocity in the head
coordinates. Although both modules work together
to minimize the tracking error in the image, smooth
pursuit is usually conducted with the assumption that
the inverse model was learned beforehand in order
to guarantee that the predictor can learn the proper
visual target dynamics. We employ LWPR (locally
weighted projection regression) for the integrated
learning of both modules [16]. It enables on-line
learning of higher-order linear/nonlinear dynamics.

Fig. 5 shows the operation of our vision system
combined with the described on-line learning algo-
rithm. The accuracy of the approach is demonstrated
in Fig. 6. The final rectified mean error reached less

A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125 123

Fig. 5. Smooth pursuit with DB’s left eye. First row shows the action taken by the external camera, second row shows successful face
tracking while the camera is moving (the face is overlayed with the detected blob), third row shows how DB’s left eye is moving, and fourth
row shows the view from all four cameras demonstrating that the person’s head stays within the viewfield of the left narrow-view camera.

than 0.05 rad, which is very small even for our foveal
vision. As expected, learning the dynamics of head
motion was more difficult than learning the dynamics
of an ideal pendulum that we used in our initial ex-
periments, but the learning algorithm was nevertheless
successful. Because of the initial values of learning
parameters, it did happen occasionally that the learn-

ing algorithm produced wrong models, which resulted
in wild eye motions and temporary loss of the visual
target. It turned out that our vision system is reliable
enough to recover from such errors so that the learn-
ing system was able to start learning again after fail-
ure. A more detailed description of this algorithm can
be found in [12].

124 A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125

Fig. 6. Top: time course of the estimated target position angle (dotted line) and the eye angular position (solid line). Bottom: time course
of the rectified mean retinal error.

5. Summary and conclusion

We have presented a real-time visual system that
enables a humanoid robot to interact with humans.
Viewing the motion tracking and estimation problem
in a probabilistic setting allowed us to avoid the ex-
cessive simplicity of real-time systems based on some
form of thresholding and ensured that the system is
not too brittle with respect to the setting of initial pa-
rameters. In fact, there are only a few parameters that
need to be set in our system. In addition, the devel-
oped algorithm is simple enough so that a real-time
implementation was possible. Compared to other prob-
abilistic real-time systems, most notably among them
the “camshift” algorithm which is included in the pub-
licly available OpenCV library [10], our system con-
siders not only the distribution of color but also the
spatial distribution of pixels. This becomes especially
important when tracking multiple objects and when it
is necessary to reason about occlusions.

We performed numerous experiments with the
proposed approach and used it for the generation of
several simple behaviors such as smooth pursuit and
on-line mimicking of human hand motion. Overall,
the system proved to work reliably when used in

complex environments such as the ones in Figs. 1–3
and 5, and to be reasonably insensitive to moderate
variations in the lighting conditions.

Acknowledgements

Most of this work was done at ATR, Kyoto, Japan,
in the frame of CyberHuman Project and ERATO
Kawato Dynamic Brain Project. Support for Chris
Atkeson was also provided by US National Science
Foundation Award IIS-9711770. Support for Aleš Ude
was also provided by the Slovenian Ministry of Edu-
cation, Science and Sport.

References

[1] C.G. Atkeson, J. Hale, F. Pollick, M. Riley, S. Kotosaka, S.
Schaal, T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, M.
Kawato, Using humanoid robots to study human behavior,
IEEE Intelligent Systems 15 (4) (2000) 46–56.

[2] G.R. Bradski, Computer vision face tracking for use in a
perceptual user interface, Intel Technology Journal Q2 (1998),
http://developer.intel.com/technology/itj.

[3] C. Bregler, Learning and recognizing human dynamics in
video sequences, in: Proceedings of the IEEE Computer

A. Ude et al. / Robotics and Autonomous Systems 37 (2001) 115–125 125

Society Conference on Computer Vision and Pattern
Recognition, San Juan, Puerto Rico, June 1997.

[4] G. Cheng, Y. Kuniyoshi, Real-time mimicking of human body
motion by a humanoid robot, in: Proceedings of the Sixth
International Conference on Intelligent Autonomous Systems
(IAS2000), Venice, Italy, July 2000, pp. 273–280.

[5] D. Comaniciu, V. Ramesh, P. Meer, Real-time tracking of
non-rigid objects using mean shift, in: Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Hilton Head, SC, June 2000, Vol. 2,
pp. 142–149.

[6] A. Jepson, M. Black, Mixture models for image represent-
ation, Technical Report ARK96-PUB-54, PRECARN ARK
Project, Department of Computer Science, University of
Toronto, Toronto, Ont., March 1996.

[7] N. Jojic, M. Turk, T.S. Huang, Tracking self-occluding
articulated objects in dense disparity maps, in: Proceedings
of the IEEE International Conference on Computer Vision,
Kerkyra, Greece, 1999, pp. 123–130.

[8] D. Koller, J. Weber, J. Malik, Robust multiple car
tracking with occlusion reasoning, in: Proceedings of the
Third European Conference on Computer Vision (Computer
Vision — ECCV’94), Stockholm, Sweden, 1994, pp. 189–196.

[9] S.J. McKenna, Y. Raja, S. Gong, Tracking colour objects
using adaptive mixture models, Image and Vision Computing
17 (3–4) (1999) 225–231.

[10] Open Source Computer Vision Library (OpenCV).
http://www.intel.com/research/mrl/research/openCV/.

[11] S. Schaal, Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences 3 (6) (1999) 233–242.

[12] T. Shibata, S. Schaal, Biomimetic smooth pursuit based on
fast learning of the target dynamics, in: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems, Maui, HI, 2001.

[13] G. Tevatia, S. Schaal, Inverse kinematics for humanoid robots,
in: Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, CA, April 2000,
pp. 294–299.

[14] A. Ude, Robust estimation of human body kinematics from
video, in: Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems, Kyongju, Korea, October
1999, pp. 1489–1494.

[15] A. Ude, C.G. Atkeson, M. Riley, Planning of joint trajectories
for humanoid robots using B-spline wavelets, in: Proceedings
of the IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 2000, pp. 2223–2228.

[16] S. Vijayakumar, S. Schaal, Fast and efficient incremental
learning for high-dimensional movement systems, in:
Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, CA, April 2000,
pp. 1894–1899.

Aleš Ude studied Applied Mathematics
at the University of Ljubljana, Slovenia,
and Computer Science at the University
of Karlsruhe, Germany, where he received
a doctoral degree in 1996. From 1998
to 2000, he was an STA Fellow in the
Kawato Dynamic Brain Project, ERATO,
JST. Currently, he holds a research posi-
tion at the Jožef Stefan Institute, Ljubl-
jana, Slovenia, and is also associated with

the CyberHuman project, ATR-I, Kyoto, Japan. His research in-
terests include the visual perception of human activity and its
application to the robot learning.

Tomohiro Shibata received his Ph.D. in
Information Engineering from the Uni-
versity of Tokyo in 1996. From 1996 to
1997, he was a Postdoctoral Fellow at the
University of Tokyo. Currently, he is a
researcher in the Japan Science and Tech-
nology Corporation. He has been a mem-
ber of the ERATO project led by Dr. Mit-
suo Kawato since April 1997. His hope
is to contribute to the brain science based

on the knowledge of robotics. He works on modeling and learning
of biologically plausible oculomotor controllers.

Christopher G. Atkeson is an Asso-
ciate Professor at the Robotics Institute
and Human–Computer Interaction Institute
at Carnegie Mellon University, Pittsburgh,
Pennsylvania. His research focuses on nu-
merical approaches to machine learning,
and uses robotics and intelligent environ-
ments as domains in which to explore the
behavior of learning algorithms. He is a re-
cipient of a National Science Foundation
Presidential Young Investigator award.

