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Abstract

The formulation and optimization of joint trajectories for humanoid robots is quite different from this same task for standard
robots because of the complexity of humanoid robots’ kinematics and dynamics. In this paper we exploit the similarity between
human motion and humanoid robot motion to generate joint trajectories for humanoids. In particular, we show how to transform
human motion information captured by an optical tracking device into a high dimensional trajectory for a humanoid robot.
We propose an automatic approach to relate humanoid robot kinematic parameters to the kinematic parameters of a human
performer. Based on this relationship we infer the desired trajectories in robot joint space. B-spline wavelets are utilized to
efficiently represent the trajectories. The density of the basis functions on the time axis is selected automatically. Large-scale
optimization techniques are employed to solve the underlying computational problems efficiently. We applied our method to
the task of teaching a humanoid robot how to make various naturally looking movements.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Generation of motion for humanoid robots is quite different from that of standard robots because of the large
numbers of joints, coupling between joints, redundancies, and people’s expectations that humanoid robots move
like humans. A possible solution is to develop a special motion creator with a rich graphical user interface that
enables programmers to tackle these problems in an interactive manner[8]. In this paper we take another approach
and investigate the application of motion capture techniques for the generation of humanoid movements. This is
motivated by the fact that motion capture has become a premier technique for animation of human like characters
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in computer graphics. Unlike other robots, humanoids can perform human like movements and we can exploit this
to generate appropriate trajectories by observing human motion.

Our basic assumption is that humanoid robot kinematics can be embedded into human body kinematics (see
Fig. 1). The humanoid’s kinematics do not need to reproduce every aspect of human kinematics (indeed, this would
be impossible), but should reproduce some properties of the human body. The best known humanoids developed up
to now, e.g. ASIMO, QRIO, SDR, HRP-2, HOAP-2, etc., fulfill this condition and images likeFig. 1are commonly
distributed with humanoids to demonstrate that they can perform human like movements. Only such robots can
truly be called humanoid and an increasing number of researchers think that humanoids are the most appropriate
robots to bring robotics away from factory floor because of their similarity to people.

Our approach involves capturing full-body motions of a human performer using an optical tracking device, which
provides 3D locations of identified active markers that are currently in view. We break the problem up into three
parts: (1) identifying a kinematic model of the person being observed, (2) estimating the joint angle trajectories of
the motion to be imitated, and (3) transforming the motion so that it is appropriate for the kinematics of the robot.
This paper presents a theoretically well founded and experimentally tested solution to problems (1) and (2), while
the technique used to solve problem (3) is relatively simple and is only briefly presented in the discussion.

1.1. Related research

The automatic construction of kinematic models for robot manipulators is a well-established field in robotics.
A lot of research has been done to identify the most suitable kinematic parameter system according to criteria
such as completeness, proportionality and equivalence (see[7] for a review). The unknown kinematic parameters
are most commonly identified from end-effector pose measurements and robot joint position readings. However,
joint position data is not available when constructing a kinematic model of a human body. Techniques that were
developed by the computer graphics community to estimate human body kinematics are therefore more relevant to
our problem[2,10,13]. These approaches have shown that it is possible to identify human body kinematics from
motion capture data.

Computer animators have the liberty to use any kinematic model they want when generating movements for
virtual characters. This is not the case when working with a humanoid robot because we must also take into account
the properties of the robot which is supposed to learn the observed movements. Our kinematic model should not
only model human motion well, but should also be related to the kinematics of the available robot. Obviously, this
aspect does not need to be considered when generating animations.

Finite elements such as B-splines are often used to represent joint space trajectories when a parametric form of
the trajectory is not known. The main problem with splines is that an optimal set of basis functions cannot easily
be determined. If there are not enough basis functions, the generated motion may be far from the desired motion.
If there are too many of them, the computational complexity is increased unnecessarily due to the larger number of
variables as well as the resulting ill-conditioning of the linear subproblems that arise in the optimization process.
Among approaches proposed to resolve this problem, a wavelet representation, in which the trajectory is represented
hierarchically[5], seems to be one of the most promising.

An alternative approach to splines was recently proposed in[6]. Instead of splines these authors use a set of
differential equations that forms a control policy to encode the information about joint space motion. They show
that their representation has various advantages such as robustness against perturbations, ease of re-use, etc. Our
work concentrates on the transformation of the demonstrated motion acquired in Cartesian space into humanoid
robot joint space. For this task, a spline-based representation seems to be ideal because it allows us to adapt local
and global properties of the trajectory.

A few approaches have been proposed in the past to convert human movements into humanoid robot movements
[3,12,15]. Unlike these authors, who primarily deal with the conversion of human motion into humanoid robot
motion in real-time based on images acquired from on-board cameras and who match their kinematic models
manually, we concentrate here on the accurate reconstruction of complex, articulated human movements, even if the
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Fig. 1. Kinematic structure of our humanoid DB (see alsoFig. 4). In the upright position with extended arms and legs, all joint axes are parallel
to one of the three main axes of the body (forward/backward:x-axis, left/right:y-axis, up/down:z-axis).



96 A. Ude et al. / Robotics and Autonomous Systems 47 (2004) 93–108

resulting system does not work in real-time. In this way we can generate high degree of freedom naturally looking
motions and also provide a high-quality input to systems like[6], which can generalize robot joint space trajectories.

2. Kinematic modeling

To a certain degree of accuracy, human motion can be modeled as an articulated motion of rigid body parts. The
first decision to be made is the selection of an adequate kinematic parameter convention to model motions generated
by such systems. Since Denavit–Hartenberg parameterization is inappropriate because it lacks proportionality, other
notations distinguished by various desirable properties have been proposed for the calibration of kinematic models
[7]. Our goal is to model human motion by a specific kinematic structure of the humanoid robot, therefore it is very
natural to specify such a parametric model using twists[9]. A twist is defined by a point on the joint axis and by
the direction of the axis. Twists allow us to work directly in a global body coordinate system instead of specifying
transformations between consecutive local coordinate frames in a kinematic chain. Such a representation is not
minimal (it involves six instead of four parameters per transformation), but we shall show later how to derive a set
of independent parameters for calibration based on twists.

To describe the kinematic body model by twists, we need to determine the location and direction of joint axes on
the human body. For a revolute joint,1 letni be the unit vector in the direction of the joint axis and letqi be any point
on the axis, both given in a global body coordinate system at zero configuration, i.e. with all joint anglesθi equal
to 0. In this case, the twistξi describing motion aboutith joint axis has the formξi = [ (−ni × qi)

T nT
i ]T. The

displacement of a body part caused by motion about such a joint by an angleθi can be calculated by an exponential
map exp(θiξi) [9].

To generate humanoid robot motion from human motion capture data, we need to relate the human joint motion
to the 3D marker motion. If the coordinates of a marker in a local coordinate system of a rigid body part to which it
is attached are given byyj, then its 3D position at body configuration(r, d, θ1, . . . , θn) can be calculated as follows:

ỹj = g(r, d)exp(θi1ξi1) · · · exp(θinx ξinx ) · Gx · yj. (1)

Hereξi1, . . . , ξinx are the twists that describe the kinematic chain generating motion of the markeryj, Gx is the
homogeneous matrix combining the position and orientation of the local body part coordinate system to which the
marker is attached with respect to the global body coordinate system at zero configuration (for DB,x = torso,
pelvis, head, left upper arm, left lower arm, left hand, right upper arm, right lower arm, right hand, left upper leg,
left lower leg, left foot, right upper leg, right lower leg, right foot),r andd are the orientation (represented by a
rotation vector) and position of a global body coordinate system with respect to the world coordinate system, and
g(r, d) denotes the homogeneous matrix corresponding tor andd. Note that the set of twists affecting motion of
the marker varies with the identity of the body part to which the marker is attached.

In this setting, the kinematic modeling involves the specification of joint axes positions and directions and the
placement of local body part coordinate systems, all these parameters being specified in the global body coordinate
system when the body is at zero configuration. The location of the global body coordinate system should also be
determined.

3. Automatic model generation

The relationship between the kinematics of a human body and humanoid robot kinematics is established by
modeling the performer’s kinematics by a model standard for humanoid robots, yet scaled to the physical size of

1 All current humanoid robots possess only revolute joints, therefore we limit our attention to this type of joints. It is, however, straightforward
to also consider prismatic joints.
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the performer. In biomechanics and computer graphics, neck, shoulder, hip and ankle joints are normally modeled
as spherical joints. This is not the case with current humanoid robots, which rather have a number of consecutive
revolute joints (typically three) that are orthogonal but do not necessarily intersect at all joints. In addition, at the
zero configuration the directions of the corresponding joint axes are normally aligned with the three main body axes
(up/down, left/right, and forward/backward). We consider the body to be in zero configuration when a subject or a
robot stands in the upright position with extended arms and legs.

Regardless of the kinematic parameter system in use, the actual values of the parameters (joint angles) depend
on the choice of local coordinate systems because they specify transformations between them. We orient the global
and the local body part coordinate systems on the human performer in such a way that they are all aligned when the
performer stands in the upright position with extended arms and legs. The axes are chosen to be parallel to the main
body axes in this configuration. Directions of joint axes at zero configuration therefore coincide with the coordinate
axes, which gives us a reference posture for the mapping of human joint angles onto robot joint angles.

3.1. Practical determination of coordinate systems and marker positions on the body

To be able to relate the marker motion to the joint motion of the observed actor, we must know the positions of
markers on the body in local body part coordinate systems. This data can be acquired by measuring the position of
markers while the actor stands in a posture for which the joint angles are known. The zero configuration is suitable
for this purpose. In our experiments we asked the performers to stand in such a position and recorded the markers.
For each body part, the origin of a local coordinate system is taken to be at the centroid of all markers attached to it.

To determine the directions of the main body axes, the optical tracking system is calibrated so that we know
where up and down is2. We can therefore assume one of the body axis at zero configuration (z-axis on our robot)
to be parallel to thez-axis of the world coordinate system. The axis from the left to the right shoulder can be
estimated by attaching two markers at the opposite positions on the left and right shoulder. The line between the two
opposite positions defines the second body axis (y-axis in our system). Due to inaccuracies in the measurements
and/or marker placement, the derived axes are not exactly orthogonal, therefore we enforce the orthogonality by
calculating a newz-axis direction

z =


 ỹr − ỹl

‖ỹr − ỹl‖
×




0

0

1





 × ỹr − ỹl

‖ỹr − ỹl‖
, (2)

whereỹl andỹr are the coordinates of the two special markers attached to the left and right shoulder, respectively.
This new direction is orthogonal to they-axis and deviates from the originalz-axis the least among all directions
orthogonal toy. Finally, thex-axis can be calculated using the cross product.

The origin of the global body coordinate system is assumed to be in the middle of a line connecting the two
specially placed markers. It is rigidly attached to the torso. At zero configuration, the global body coordinate system
and all local body part coordinate systems are assumed to be aligned, which makes it possible to calculate the position
and orientation of each body part at zero configuration in the global body coordinate system (Gx in Eq. (1)). We
can also use this assumption to transform the world coordinates of the markers into the local coordinates (ỹj and
yj in Eq. (1)).

Because all joint angles are equal to 0,Eq. (1)simplifies to

ỹj =
[

R d

0 1

]
· Gx · yj. (3)

2 This is done by aligning thez-coordinate of the calibration object with the up/down direction in the real world.
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The position of the global body coordinate system is given byd = (ỹl + ỹr)/2, while the orientation is given by
the rotation matrixR having the three coordinate axes in its columns

R =
[

ỹr − ỹl

‖ỹr − ỹl‖
× z

ỹr − ỹl

‖ỹr − ỹl‖
z

]
. (4)

Due to the alignment by construction, the relative orientation of each body part coordinate system with respect to
the global body coordinate system at zero configuration is given by the identity matrix. The relative position can be
calculated by subtracting the position of the global body coordinate system from the position of local coordinate
systems. Thus for the body partx we have

Gx =


 I

1

Mx

∑
∀ j∈x

ỹj − d

0 1


 , (5)

whereMx is the number of markers attached to the body part. Finally, the local coordinates of markersyj can be
obtained by invertingEq. (3).

3.2. Estimation of joint positions

At this point, the joint axis locations are the only parameters that still need to be estimated. To estimate these
parameters, the subject is asked to perform a set of movements which are measured by the motion capture system.
He or she should exercise motions around all relevant degrees of freedom if the method is to return an unambiguous
answer. Instead of trying to estimate all joint locations in one big optimization process, we decided to split the
estimation in 10 separate smaller optimization problems: neck, waist, left and right shoulder+ elbow, left and right
wrist, left and right hip+ knee, and left and right ankle.

The position of a joint axis in 3D space has only two degrees of freedom because the position along the axis is
arbitrary. Recall fromSection 3.1that directions of all joint axes at zero configuration are parallel to the coordinate
axes of the global body coordinate system and are thus all given by one of the vectors [1 0 0]T, [ 0 1 0]T,
[ 0 0 1]T, [ −1 0 0]T, [ 0 −1 0]T and [0 0 −1 ]T. It is easy to see that the coordinate corresponding
to the non-zero coordinate of the joint axis direction vector does not influence the twist. For example, for a joint
axis located at [a b c ]T and parallel to [0 1 0]T, the corresponding twist is equal to

[(−[ 0 1 0]T × [ a b c ]T)T[ 0 1 0]]T = [ −c 0 a 0 1 0]T (6)

and is thus independent of the second coordinate, i.e.b. It follows that we can parameterize the location of each
joint axis by two coordinates different from the non-zero coordinate of the direction vector of the axis.

Now that we have the independent coordinates for the joint axis locations, we can estimate them by minimizing a
suitable optimization criterion. Apart from joint axis locations, we also need to estimate the position and orientation
of the body in space as well as the joint angles in order to match the model markers with the measured marker
positions. To make the optimization process smaller, we estimate all the degrees of freedoms prior to the joints under
consideration in a separate optimization process using the sequential method fromSection 4.1. The optimization
process then involves only the joint angle locations that need to be estimated and the corresponding joint angles.
Still, this results in a very large optimization problem. For instance, to estimate the neck joint locations, we need to
minimize the following optimization criterion:

h(a, b, c, d, e, f, {θ1(tk), θ2(tk), θ3(tk)}Nk=1)

=
N∑
k=1

∑
j∈head

‖g(r(tk), d(tk))exp(θ1(tk)ξ1(a, b))exp(θ2(tk)ξ2(c, d))

× exp(θ3(tk)ξ3(e, f)) · Ghead· yj − ỹj(tk)‖2. (7)
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Fig. 2. Sparsity pattern of the Jacobian of the vectorized optimization criterion(7). The full Jacobian is shown on the left. On the right, the upper
left corner of the Jacobian corresponding to the first three measurement sets and variables is depicted.

Note that the number of parameters increases with the number of measurement times. We typically used 300
measurements in each of the 10 optimization problems and therefore needed to estimate 906 or 1208 variables
per optimization problem. To solve such large optimization problems we utilized a subspace trust region approach
and sparse matrix algebra[4]. The trust region approach requires the calculation of first derivatives of the criterion
functionh. Fortunately, the Jacobian ofh (shown inFig. 2) is sparse and our optimization method uses sparse matrix
algebra to reduce the computation time.

3.3. Discussion of the technique

We first note that our system does not directly estimate body part positions and orientations. Indeed, we did not
always have enough marker data to do this in our experiments (we typically had 2, 3, or 4 markers per body part
when performing calibration). Thus the parameters describing joint motion preceding the axes under consideration
are either determined in a previous step or are part of the current estimation process.
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Some of the constraints imposed on the humanoid robot kinematics can be relaxed. For example, it is not necessary
that the robot joint axes are parallel to the main body axes or even that they are orthogonal. However, to map human
motion onto a humanoid robot body, we need to know the orientation of these axes with respect to the main body
axes (or any other coordinate system chosen as a global body coordinate system). We could then parameterize the
kinematic model using theseknown joint axis directions. However, looking at current humanoid robots, the practical
value of this is rather limited and since this greatly complicates the notation while clouding important issues, we do
not present the necessary mathematics in this section.

Special placement of the two shoulder markers could be avoided by estimating the left and right shoulder joint
position as in[10] or [13]. These two methods are based on the estimation of neighboring body part positions and
orientations, but this is problematic with systems that provide only sparse marker data such as our Optotrak. In
addition, the estimation of joint locations is a noisy process and the estimates vary depending on the movements
that were actually performed because the human shoulder is not a perfect spherical joint and has some translation
capability. Hence there is no guarantee that the parameters generated in this way would be more accurate than
the parameters acquired from special marker placement. For these reasons we decided to stick with our original
approach which is simpler to implement.

4. Motion generation from marker data

Our trajectory planning method should generate motions which are perceptually similar to the motion of the
performer. To attain this, we minimize the difference between the measured marker positions and marker po-
sitions generated by the recovered joint angles for each frame of motion over the set of body configurations
(r(tk), d(tk), θi(tk))

M∑
j=1

‖g(r(tk), d(tk))exp(θi1(tk)ξi1) · · · exp(θinx (tk)ξinx ) · Gx · yj − ỹj(tk)‖2

=
M∑
j=1

‖hj(r(tk), d(tk), θ1(tk), . . . , θn(tk))− ỹj(tk)‖2

= ‖h(r(tk), d(tk), θ1(tk), . . . , θn(tk))− ỹ(tk)‖2, (8)

whereh = [hT
1 , . . . ,h

T
M ]T andy(tk) = [y1(tk)

T, . . . , yM(tk)
T]T. ỹj(tk) denotes the measured markers at timetk,

M is the number of markers, andn the number of joints.

4.1. Sequential motion estimation

The kinematics of humanoid robots are much too complicated to allow for analytical solutions, although partial
solutions are sometimes feasible[1]. The optimization of criterion(8) is a standard non-linear least-squares opti-
mization problem and there are several good iterative methods that can be applied to solve it[4]. Our experiments
have shown that the incorporation of constraints into the above optimization criterion can increase the quality of the
reconstructed motion. For example, the elbow joint angle is equal to 0 when the performer fully extends his arm.
It is visually very disturbing if the estimated elbow angle turns out to be negative because of measurement noise
and/or inaccuracies in the kinematic model. Thus it is sensible to add simple bounds which limit the angles to the
area that can actually be reached by a human to the above optimization criterion

li ≤ θi ≤ ui. (9)
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Efficient algorithms are available for the minimization of the non-linear least-squares criterion(8) subject to box
constraints(9). We utilized a method based on the Gauss–Newton iteration available in the MATLAB Optimization
Toolbox to solve this problem.

4.2. Estimation of global trajectory

The straightforward approach of sequentially minimizing criterion(8) at each measurement time has several
deficiencies. First of all, optical motion capture systems often cannot recover the positions of all markers due to
occlusions. This can result in underconstrained linear systems causing the optimization process to break down.
Moreover, experiments showed that even when the positions of all markers can be recovered, the optimization
process can still break down because of the singularities in the kinematic model. Finally, besides making our robot
move like a human, we also need to generate feasible robot motions.

The optimization process can be made more reliable by recovering a global trajectory instead of single con-
figurations and by adding a regularization term to the objective function(8). Writing the full-body trajectory as
f (t) = (r(t), d(t), θ1(t), . . . , θn(t)), we look for a function that minimizes

s(f ) = 1

2

N∑
k=1

M∑
j=1

‖hj(f (tk))− ỹj(tk)‖2, (10)

over all possible trajectories. Regularization can be achieved by minimizing the amplitude of physical quantities
such as acceleration (second derivative) or jerk (third derivative)

r(f ) = 1

2

∫
0

1‖f (m)(t)‖2 dt, m = 2 or 3. (11)

Note that we normalize the time of our trajectory. In general we could penalize any weighted combination of
kinematic variables such as acceleration, jerk, and violation of joint space or Cartesian soft limits.

The trajectory planning problem thus becomes

min
f

{s(f )+ λr(f )}, (12)

whereλ is the parameter governing the tradeoff between the two objective functions. Apart from the above-mentioned
computational issues, it is advantageous to generate smooth trajectories also in order to reduce the wear and tear of
the mechanical system, avoid exciting higher order dynamics, and because real actuators often have limits on their
torque output or on the rate of change of output. Furthermore, we find that jerky motions do not look natural.

Since parametric forms of complex body movements are normally not known, we used a finite element method to
represent the trajectory. As pointed out inSection 1, wavelets are suitable for the representation of general motions
because they allow us to automatically determine the density of basis functions on the time axis.

4.3. B-spline wavelets

Let Vj(m) be the set of 2j +m endpoint-interpolating B-splines of degreem constructed from knot sequence

1

2j


0, . . . ,0︸ ︷︷ ︸
m+1 times

,1,2, . . . ,2j − 2,2j − 1,2j, . . . ,2j︸ ︷︷ ︸
m+1 times


 . (13)

Linear spaces spanned by these splines are nested, i.e.

L(V 0(m)) ⊂ L(V 1(m)) ⊂ L(V 2(m)) ⊂ · · · , (14)
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whereL(X) denotes the linear space spanned by members ofX. Each orthogonal complement ofL(V j(m)) in
L(V j+1(m)) is called a wavelet space and its basis is denoted byWj(m). Members ofWj(m)are called semiorthogo-
nal wavelets because they are orthogonal to B-splines but not to each other. By definitionL(Wj(m)) ⊂ L(V j+1(m)),
thus wavelets are piecewise polynomials of the same degree as the underlying B-splines. B-splines have small sup-
port, i.e. they are different from zero only on a short interval, and a construction for semiorthogonal wavelets with
the smallest support, which are called B-spline wavelets, is given in[14]. We omit the details because of lack of
space.

Let φji andψji be members ofVj(m) andWj(m), respectively. The multiresolution finite element approach
assumes that the optimal trajectory can be written as a linear combination of B-spline wavelets:

f =
∑
i

Ciφ
L
i +

∑
L≤j≤K

∑
i

D
j
i ψ
j
i . (15)

Here B-splinesφLi are fixed at the lowest possible resolutionL, while the optimal set of waveletsψji , L ≤ j ≤ K,
should be determined automatically by the optimization procedure.

4.4. Large-scale optimization

By replacingf in the optimization problem(12) with the above linear combination of B-splines and wavelets,
which are fixed in this section, we obtain a classic unconstrained optimization problem. Instead of minimizing over
all functions from some function space, we can minimize over parametersCi,D

j
i . Note, however, that the number

of unknown parameters is very high. The full-body motion of DB involves 26 joints plus six degrees of freedom
for the displacement in space. If we fix the highest resolution space of piecewise polynomials toV 6(3), there are
altogether 67 basis functions. Thus in this case the highest possible number of variables is 67× 32 = 2144.

Trust region methods are suitable for solving large-scale optimization problems[4]. LetH andg, respectively, be
the Hessian and the gradient of the objective function(12)at the current estimate for unknown variablesx = (Ci,Dji ).
The main idea of the trust region approach is to approximate the criterion function with a quadratic function in the
neighborhood around the current estimate. The next approximation is thus computed by minimizing

min
x

{1
2xTHx + xTg such that‖Sx‖ ≤ ∆}, (16)

whereS is a diagonal scaling matrix and∆ a positive scalar setting the size of the neighborhood.
The trust region approach needs the gradient and the Hessian of the criterion function. Let us define

c(x) =




h1

(∑
i Ciφ

L
i (t1)+

∑
j

∑
iD
j
i ψ
j
i (t1)

)
− ỹ1(t1)

...

hM

(∑
i Ciφ

L
i (tN)+

∑
j

∑
iD
j
i ψ
j
i (tN)

)
− ỹM(tN)


 . (17)

Comparing(17) with the objective function(10) we note thats(f ) = (1/2)‖c(x)‖2. Let J be the Jacobian ofc at
the current estimate. It is easy to verify that the gradient ofs is equal toJTc(x) while the Hessian ofs is given by
JTJ+ second order terms. It is a common practice in non-linear least-squares problems to neglect the second order
terms, which are expensive to calculate, and to approximate the Hessian byJTJ .

Calculation of the gradient and Hessian of the criterion function(11) involves the calculation of inner products
of derivatives of basis functions∫ 1

0
φ
(m)
i φ

(m)
j dt,

∫ 1

0
φ
(m)
i ψ

(m)
j dt,

∫ 1

0
ψ
(m)
i ψ

(m)
j dt.
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Let Ω be the matrix of these inner products. It is easy to see that(11) can be rewritten asr(f ) = (1/2)xTΩx.
Thus the gradient of the objective functionr is given byΩx and its Hessian is simply equal toΩ. We employed the
Gaussian quadrature formulae to evaluate these integrals exactly.

The bulk of the computing time when calculatingJ is spent on the calculation of the body kinematics Jacobian
at all measurement times. Due to the structure of our model, the kinematics Jacobian is sparse. Moreover, due to the
minimal support property of B-splines and wavelets,J , JTJ , Ω and the resulting combined HessianJTJ + λΩ
are also sparse.

We showed that the gradient and the Hessian of the combined criterion function(12)can be estimated as

g = JTc(x)+ λΩx, H ≈ JTJ + λΩ. (18)

Thus the next estimate for our trajectory can be computed by solving the trust region subproblem(16). To deal with
the high dimensionality of the solution space, the solution of(16)is restricted to a two-dimensional subspace spanned
by the direction of the gradient and direction of the negative curvature. The calculation of the next approximation in
this 2D space is trivial. We were able to use the MATLAB Optimization Toolbox implementation of a trust region
method for large-scale optimization problems and the sparse matrix capabilities of MATLAB for the resolution of
sparse linear systems.

4.5. Selecting the optimal resolution

Criteria similar to the ones proposed in[5] for variational geometric modeling were applied to choose the optimal
resolution: add more wavelets to better approximate the trajectory and remove the unneeded wavelets to obtain a
solution with lower energy. While the first principle can be realized using hierarchical B-splines, the second criterion
is much easier to realize in a wavelet basis because the necessary density is reflected in the magnitude of wavelet
coefficients.

After calculating an estimate for the trajectory at a given resolution, we check the magnitude of wavelet coef-
ficients. If they are below a manually tuned threshold, we remove the corresponding wavelets. The next step is
the addition of higher resolution wavelets on time intervals where marker positions generated by the recovered
trajectory poorly match the measured markers. Wavelets centered on such intervals are added to the solution and
their initial coefficients are set to zero. Experimentally we set the threshold to 4 cm, which is about double the
average marker error we typically had in our sequential tests. This procedure is repeated until a stable solution is
found. To prevent cycling between adding and removing the wavelets, each wavelet can be removed only once;
once it is removed it cannot be switched on again. While this is clearly a heuristic, such an approach allows us to
quickly arrive at a stable solution.

5. Results and discussion

We carried out numerous experiments to test our method for the automatic generation of kinematic models. We
also captured several motion trajectories involving full-body motion of a human performer to evaluate our trajectory
generation approach. A marker-based measurement system Optotrak (see the web pagehttp://www.ndigital.com/
opto.html) was used for this purpose. Optotrak uses identifiable active markers which is advantageous because
full-body movements often cause some of the markers to be occluded. Systems using passive markers are more
prone to matching errors in such cases.

In our first set of experiments we tested the accuracy of the model construction process. The subjects exercised
each joint complex in isolation trying to use all the degrees of freedom. Similar movements were performed in
every motion capture session and the recovered kinematic parameters were very stable. The statistics for one
subject (mean values and average errors), who exercised the upper body degrees of freedom 10 times, is shown in

http://www.ndigital.com/opto.html
http://www.ndigital.com/opto.html
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Table 1
Locations of neck axes (in mm)

x-Axis location y-Axis location z-Axis location

Mean 0 1.7 −100.4 −78.1 0 −76.6 −66.1 −7.6 0
RMSE 22.0 24.6 5.5

Table 2
Locations of elbow axes (in mm)

Left elbow,y-axis location Right elbow,y-axis location

Mean −51.9 0 325.0 −79.5 0 313.5
RMSE 1.4 1.3

Table 3
Locations of left shoulder axes (in mm)

x-Axis location y-Axis location z-Axis location

Mean 0 −167.0 27.4 −72.3 0 6.3 −52.0 −215.5 0
RMSE 3.0 3.0 1.4

Tables 1–6(RMSE stands for root mean square error of the calculated joint locations with respect to the average
joint location). A revolute joint is a rather poor approximation for the true neck kinematics, so it is not surprising
that the determination of the joint axes on the head is much less repeatable than the determination of the joint axes
on the arms. Note also that the results for both arms are reasonably symmetrical. The processing time needed to
generate a 30 degrees of freedom kinematic model (DB has 26 DOFs excluding the eyes, but we added two DOFs

Table 4
Locations of right shoulder axes (in mm)

x-Axis location y-Axis location z-Axis location

Mean 0 175.8 31.0 −63.9 0 19.3 −51.6 213.6 0
RMSE 5.3 4.0 2.7

Table 5
Locations of left wrist axes (in mm)

x-Axis location y-Axis location z-Axis location

Mean 0 −205.1 589.0 18.2 0 602.6 25.2 −224.3 0
RMSE 2.2 2.3 1.1

Table 6
Locations of right wrist axes (in mm)

x-Axis location y-Axis location z-Axis location

Mean 0 214.3 575.0 −14.8 0 583.3 −15.8 241.2 0
RMSE 2.3 2.4 0.7
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Fig. 3. Human demonstration and snapshot from the karate kata animation generated by wavelets.

at each hip to allow for more complex animations as inFig. 3) was between 9.5 and 10.5 min on a 2 GHz Pentium 4
using 15–30 s long motion sequences captured at 60 Hz for each joint complex and starting from a generic kinematic
model.

Figs. 3 and 4compare the generated computer animations and humanoid robot motions with the captured data.
The Okinawan dance movements were reproduced from motion capture sessions shorter than 10 s. Longer motions
were generated by concatenation. Our experiments have shown that the rather limited kinematic structure of DB
is sufficient to reproduce quite complex human motions. The karate kata animation was generated from a data
sequence over 1.5 min long, although this sequence was divided into 10 s long subsequences to make the trajectory
optimization problem manageable. The data were captured at 60 Hz. The generation of a 10 s long trajectory took
about 6 min on a 2 GHz Pentium 4 with the lowest resolution fixed atV 3(3) and the highest resolution fixed atV 6(3).
Most of the computation time was spent on the last few iterations when more wavelets are activated. One iteration
step with more than half of the wavelets active takes about 1.5 min. On the other hand, a sequential approach can
be implemented in real-time[12].

The experiments have also shown that our global trajectory generation approach offers some advantages over the
straightforward approach of sequentially minimizing the criterion function(8). Firstly, the sequential minimization
requires that a sufficient number of markers be visible at each measurement time. The optimization process can fail
when too many of them are occluded. In the sequential approach, we were able to recover part of the Okinawan

Fig. 4. Left image shows the captured markers (light gray) and the reconstructed marker motion (dark gray). Right image shows DB performing
Okinawan dance generated by the sequential approach.
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Fig. 5. Trajectory of the right arm flexion/extension.

trajectory only by interpolating the marker positions from the times when they were not occluded over the intervals
of occlusion. But when there are too many consecutive missing markers, the interpolation process does not do a
good job because it has no knowledge about the human motion. The missing markers problem was alleviated by the
batch recovery of a complete trajectory. Secondly, it turned out that even when the positions of all markers can be
measured, the recovery of some of the joint angles becomes sensitive at some configurations due to the kinematic
singularities. This issue is resolved in the global approach with the introduction of the regularization factor(11).
Thirdly, the recovered trajectory is smooth and can avoid discontinuities that can arise in the sequential approach
because of the switching between local minima of the objective function.

The reconstructed trajectories are high dimensional (over 30 degrees of freedom), so due to space limitations we
are unable to present all of their components. Some of the above-mentioned findings are nicely demonstrated on
the recovery of the right shoulder flexion/extension degree of freedom (seeFig. 5). The dashed trajectory shows
the trajectory recovered by the sequential approach. It is more noisy than the other two trajectories and it contains
discontinuities. The dotted trajectory shows the recovered trajectory using an initial cubic B-spline basis (third
resolution level, 11 basis functions). While it is less noisy than the trajectory generated by the sequential approach
and it does not contain discontinuities, it only poorly follows the measured markers. The solid trajectory shows
our final result after adding some wavelet functions. It is both smooth and continuous and it follows the measured
markers better.

When the target character has a different size and proportion from the actual performer, we cannot simultaneously
preserve the joint angles and end-effector positions. This leads to various artifacts such as foot sliding, which are well
known to the computer animation community. We have indeed observed these artifacts in our animation experiments,
but this was only a minor problem when mapping the reconstructed motion onto DB. It turned out that the mismatch
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between the joint limits of an actor and DB is a much more serious problem. We dealt with it by globally scaling
and translating the reconstructed joint trajectories into the range of DBs joints. A local approach to scaling was
proposed in[11]. It is also possible to replace the human joint limits with DBs joint limits in(9). This approach
trades off joint errors and Cartesian target errors in a straightforward way and makes the robot see only feasible
postures when interpreting or reasoning about the captured motion. Unfortunately, this approach also prevents the
joints from moving when reaching joint limits, which is sometimes unnatural.

6. Summary and conclusions

We presented a fully automatic technique for the generation and synchronization of kinematic models describing
human and humanoid robot motion. Our technique involves measuring marker positions at zero configuration and
over a repertoire of motions exercising all relevant degrees of freedom. No manual measurement of the performer’s
limb lengths is necessary. We exploited the sparseness of the Jacobian matrices to solve the resulting optimization
problems efficiently.

The second important contribution of this paper is a new approach to the formulation and optimization of joint
trajectories for humanoid robots using B-spline wavelets. We demonstrated that B-spline wavelets are suitable for
the formulation and optimization of humanoid robots’ trajectories at different resolution levels and showed how to
resolve the resulting large-scale optimization problems to compute such trajectories. The ability to treat large-scale
optimization problems that need to be solved to generate optimal full-body motions and to automatically infer the
appropriate resolution level draws a distinction between our approach and other approaches proposed for human
motion capture in the literature.

The difference between motion capabilities of a human performer and of a humanoid robot is a serious problem
when converting motion capture data. Constraining the joint limits in the optimization criterion does result in feasible
motions, but the ‘style’ or ‘essence’ of motion might suffer. A possible field for further research is the development
of additional criterion functions that improve the style of motion and that can be added to the objective function.
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