
Robotics and Autonomous Systems 60 (2012) 1327–1339
Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

On-line motion synthesis and adaptation using a trajectory database
Denis Forte a,∗, Andrej Gams a, Jun Morimoto b, Aleš Ude a,b

a Jožef Stefan Institute, Department of Automatics, Biocybernetics, and Robotics, Jamova cesta 39, 1000 Ljubljana, Slovenia
b ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

a r t i c l e i n f o

Article history:
Received 12 July 2011
Received in revised form
13 April 2012
Accepted 7 May 2012
Available online 1 June 2012

Keywords:
Robot learning
Programming by demonstration
Real-time generalization of movements
Statistical methods
Gaussian process regression
Locally weighted regression
Dynamic movement primitives
Kinesthetic guiding
Example movements
Radial basis functions

a b s t r a c t

Autonomous robots cannot be programmed in advance for all possible situations. Instead, they should
be able to generalize the previously acquired knowledge to operate in new situations as they arise. A
possible solution to the problem of generalization is to apply statistical methods that can generate useful
robot responses in situations for which the robot has not been specifically instructed how to respond.
In this paper we propose a methodology for the statistical generalization of the available sensorimotor
knowledge in real-time. Example trajectories are generalized by applying Gaussian process regression,
using the parameters describing a task as query points into the trajectory database. We show on real-
world tasks that the proposed methodology can be integrated into a sensory feedback loop, where the
generalization algorithm is applied in real-time to adapt robot motion to the perceived changes of the
external world.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we investigate the problem of real-time, goal-
directed trajectory generation from a database of example
movements. This problem has received a considerable amount of
attention in recent years [1–5]. It has often been studied in the
context of the programming by demonstration paradigm [6,7]. Our
primary interest is in real-time synthesis of new trajectories using
local, statisticalmethods. For the purpose of this paper, real-time is
defined to be the frequency comparable to a typical camera stream,
i.e. 30 Hz. In our experiments, the database of training movements
has been acquired by sequentially guiding a robot through a set of
example trajectories, but automatic approaches to segmentation
from a long sequence of example movements are also possible [8].

It has been shown by Ude et al. [5] that it is possible to gen-
eralize the movements collected in an example database to new
situations by utilizing the goal of an action as a query point into
the database. In [5] movement generalization was implemented
by employing a combination of locally weighted regression [9] and
Gaussian process regression [10], where raw trajectory data was
used as input for generalization. The proposed approach was ap-
plied to generalize various behaviors including reaching, throwing,

∗ Corresponding author.
E-mail address: denis.forte@ijs.si (D. Forte).

0921-8890/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2012.05.004
and drumming. While this approach can take into account exter-
nal perceptual feedback to generalize example movements to dif-
ferent situations, its computational cost is prohibitive for use in a
real-time feedback loop. The goal of this paper is to provide an ap-
proach that is efficient enough to be applied in such a loop.

The approach described in [5] uses Dynamic Movement
Primitives (DMPs) [11,12] as the basic representation for the
encoding of robot movements. DMPs have many useful properties
such as a built-in ability to react to perturbations without
introducing discontinuities in the resulting robot motion. As an
autonomous representation, they are not directly dependent on
time, which makes it easy to stop the execution of movement
without extensive bookkeeping of time evolution [13]. DMPs
can also be extended to include capabilities such as obstacle
avoidance [14] and avoidance of joint limits. All these adaptations
can be done in real-time, which enables the robot to react to
external sensory feedback. In this paper we expand on such built-
in abilities by providing a methodology for real-time generation of
DMPs using a trajectory database. In this way we provide means
for on-the-fly, task-specific adaptation of motion.

One DMP can encode one specific robot trajectory. In case of
point-to-point (discrete) movements, the trajectory of each robot
degree of freedom y (given either in joint or in task space) is de-
scribed by the following system of nonlinear differential equations
τ ż = αz(βz(g − y) − z) + f (x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx, (3)

http://dx.doi.org/10.1016/j.robot.2012.05.004
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:denis.forte@ijs.si
http://dx.doi.org/10.1016/j.robot.2012.05.004


1328 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
where x is the phase variable and z is an auxiliary variable.
αx, αz, βz and τ need to be specified in such a way that the system
converges to the unique equilibriumpoint (z, y, x) = (0, g, 0). The
nonlinear term f contains free parameters that enable the robot to
follow any smooth point-to-point trajectory from the initial posi-
tion y0 to the final configuration g

f (x) =

N
k=1

wkΨk(x)

N
k=1

Ψk(x)
x, Ψk(x) = exp


−hk (x − ck)2


. (4)

Here ck are the centers of radial basis functions distributed along
the trajectory and hk > 0.Weightswk need to be estimated so that
the DMP encodes the desired trajectory. For robots with many de-
grees of freedom, each degree of freedom is represented by its own
equation system (1)–(2), but with a common phase (3). We used
the algorithm described in [5] to determine the placement, width,
and number of radial basis functions Ψk.

Recently, Gribovskaya et al. [2] proposed an alternative
approach based on dynamic systems that can encode a complete
class of movements. In their approach, a class of movements is
represented by a more general nonlinear system of differential
equations
ẏ = h(y). (5)
Note that the phase information is not available in this approach,
which is problematic in the case of intersecting velocity fields,
where the same robot configuration y is associated with more
than one velocity ẏ. Nevertheless, unlike DMPs, this representation
is not limited to one specific movement but can represent more
complete velocity fields that can encode a class of movements.
The nonlinear function h can be estimated using Gaussian mixture
regression [2], which results in a large-scale global optimization
problem. Once this optimization problem is solved, the on-line
robot control can be realized by integrating equation (5), which
enables the robot to switch to a different movement (within the
learned class of movements) in real-time. The stability analysis of
the resulting system of differential equations is also given in [2].

Since DMPs have not been designed to represent whole classes
of movements, a standard DMP cannot switch to a different type
of movement in case of perturbations. It can only react to a certain
perturbation by ‘‘pulling’’ the robot back to the desired trajectory in
a generic fashion.While the recently proposed approach described
in [5] does allow for the generation of DMPs that are adapted
to a given configuration of the external world, this approach is
computationally too expensive to be applied within the robot
feedback loop. However, it has the advantage that the generalized
DMP is computed by local regression methods, which makes it
possible to apply local, linear optimization as compared to the
global, nonlinear optimization approach described in [2]. Since the
approach from [5] does not attempt to represent a whole class
of movements within one differential equation, the selection of
basis functions for regression is less critical than in [2]. In this
paper we propose a new approach to movement generalization
using Gaussian process regression, which not only preserves the
advantages of the local approach, but also allows for real-time
computation of DMPs, thus making it suitable for its application
within a real-time sensory feedback loop.

Parametric hidden Markov models [3] are another movement
representation that could be used to encode and parameterize a
database of example movements forming a movement primitive.
However, dynamic movement primitives are a more suitable
movement representation than hidden Markov models when the
execution on a real robot is paramount. This is due to the built-
in ability of DMPs to generate smooth movements even in the
case of perturbations. In addition, DMPs can be modulated to react
in a generic way to different changes that may arise during the
execution of the task.
2. Approximation of a class of movements with Gaussian
process regression

Lets assume that we have a set of robot movements Mi, i =

1, . . . ,NumEx, which all result in a successful execution of a given
task in different situations. As an example we consider a set of
reaching movements towards different targets in 3-D space. We
denote the parameters characterizing the task by qi ∈ Rm, i =

1, . . . ,NumEx,m being the dimensionality of these parameters,
whichwe also call query points andNumEx the number of example
movements. Every movement Mi is encoded by a sequence of
trajectory points


yij, ẏij, ÿij ∈ Rdof


, measured at times tij, j =

1, . . . , ni, ti1 = 0. Here ni denotes the number of samples on
trajectoryMi, while dof denotes the number of degrees of freedom
encoded by the example trajectories. We have experimented both
with end-effector trajectories (in this case yij are points in the
Cartesian space) and with robot joint trajectories (in this case yij
are the joint angles stemming from the active degrees of freedom).
The problem is to compute a trajectory for any given query point
q. For example, in the case of reaching, a query point is given by
the desired target position and we need to compute the associated
reaching trajectory M. Example movements Mi can be acquired
either by kinesthetic guiding [15] or by imitation [16].

To become able to accomplish a task in any situation, the robot
needs to learn a function that maps the parameters describing the
task q into the parameters describing the desired trajectoryM, i.e.

G : q −→ M. (6)

In general, G is not a function. For example, in the case of
reaching movements, there are many different ways to reach
towards a desired destination. However, we can impose an
additional constraint that synthetic reaching trajectories should
be similar to the example reaching trajectories. The closer the
desired query point q is to the example query point qj, the more
similar the generated trajectory M should be to the trajectory Mj
associated with query point qj. With this additional constraint,
G(q; {M1, . . . ,MNumEx}) becomes a function that can be learned.

Our approach is based on the assumption that humans are un-
likely to use a totally different movement strategy if the task pa-
rameters change only slightly and there are no qualitative changes
in the task. Under such circumstances, human teachers normally
generate sets of trainingmovements that smoothly transition from
one to another. It is therefore reasonable to assume that transitions
between movements that solve the task in slightly different situa-
tions are smooth as long as there are no qualitative changes in the
task. For our reaching example this means that if the training tra-
jectories are given in the joint space and the robot is redundant,
then the teacher must select the same inverse kinematics solution
in all trainingmovements. It is not possible tomix qualitatively dif-
ferent joint trajectories because statistical generalization cannot be
aware of the kinematics properties of the robot.

2.1. Converting the example trajectories into dynamic movement
primitives

To reduce the amount of data that we need to process for action
generalization, we first encode each of the example movements
Mi as a dynamic movement primitive (DMP). Any of the standard
methods proposed in the literature can be used for this purpose.
Let’s denote

f targijl = τ 2
i ÿijl − αz(βz(gil − yijl) − τiẏijl), (7)

where i = 1, . . . ,NumEx, j = 1, . . . , ni, l = 1, . . . , dof .
The above equation can be derived by rewriting the system of
two first-order differential equations (1)–(2) as one second-order



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1329
differential equation (by writing z = τ ẏ, ż = τ ÿ in (1)). The
parameters wikl, k = 1, . . . ,N (N is the number of DMP kernel
functions, see (4)) can be estimated by solving the following linear
regression problems

Xiwil = ftargil , (8)

where

Xi =



Ψ1(xi1)
N
i=1

Ψi(xi1)
xi1 · · ·

ΨN(xi1)
N

k=1
Ψi(xi1)

xi1

. . . · · · · · ·

Ψ1(xiT )
N

k=1
Ψk(xiT )

xiT · · ·
ΨN(xiT )
N

k=1
Ψk(xiT )

xiT


, (9)

and wil = [wi1l, . . . , wiNl]
T , fil = [f targi1l , . . . , f targiTl ]

T . The phase
parameters xij = x(tij) are calculated by integrating equation (3)
with the boundary condition xi1 = x(0) = 1.

The above process enables us to convert the initial raw
trajectory data Mi into DMPs, i.e. Mi −→ (wi, gi, τi), where wi ∈

RN×dof are theweights ofDMPs for all degrees of freedom, gi ∈ Rdof

are the final configurations on the example trajectories, i.e. gi =

yini , and τi ∈ R are the time durations of example trajectories, i.e.
τi = tini .

2.2. Trajectory generalization using Gaussian process regression

The conversion of raw example trajectories into DMPs results in
a significant data reduction. For example, a four second trajectory
sampled at 500 Hz contains 2000 data points, which can typically
be reduced to a DMP defined by a few tens of radial basis functions.
In this section we propose to synthesize new movements directly
from the estimated DMP parameters. In this case function (6)
becomes

G

{wi, gi, τi; qi}

NumEx
i=1


: q −→ (w, g, τ ) . (10)

Gaussian Process Regression (GPR) can be applied to estimate
function (10). Gaussian processes are based on Bayesian probabil-
ity modeling [10]. The resulting models have an interesting and
useful feature that, besides output values, they also predict con-
fidence in these values. GPR exhibits good generalization perfor-
mance and the predictive distribution can be used to measure
the uncertainty of the estimated function. It has been demon-
strated that this technique outperforms other regression methods
on problems such as estimating inverse dynamics of a seven de-
grees of freedom robot arm [17].

Technically, a Gaussian process is defined as

g(q) ∼ GP

m(q), k(q, q′)


, (11)

where m(q) = E[g(q)] is the mean function and k(q, q′) = E
[(g(q) − m(q))(g(q′) − m(q′))] the covariance function of the
process. Let’s assume that we have – as when estimating function
(10) – a set of noisy observations {(qi, yi)|i = 1, . . . ,NumEx}, yi =

g(qi) + ϵ, ϵ ∼ N (0, σ 2
n ). Subtracting the mean from the training

data, we can further assume that m(q) = 0. Given a set of query
points g(q∗), the joint distribution of all outputs is estimated by

y
y∗


∼ N


0,


K(Q,Q) + σ 2

n I K(Q,Q∗)
K(Q∗,Q) K(Q∗,Q∗)


, (12)

where Q,Q∗, y, y∗ respectively combine all inputs and outputs
and K(·, ·) are the associated joint covariance matrices calculated
according to Eq. (11). It can be shown [10] that the expected value
ȳ∗ associated with the new query points q∗ is given by

ȳ∗
= E[y∗

|Q, y,Q∗
] = K(Q∗,Q)[K(Q,Q) + σ 2

n I]
−1y, (13)

with the following estimate for the covariance of the prediction

cov(y∗) = K(Q∗,Q∗) − K(Q∗,Q)[K(Q,Q) + σ 2
n I]

−1K(Q,Q∗).

One commonly used covariance function is

k(q, q′) = σ 2
f

m
i=1

exp


−
1
2

(qi − q′

i)
2

l2i


, (14)

which results in a Bayesian regression model with an infinite
number of basis functions. m denotes the dimension of the query
point space. See [10] for more details.

With GPR new estimates are calculated using Eq. (13). Themost
computationally expensive part is the calculation of [K(Q,Q) +

σ 2
n I]

−1, but since this matrix depends only on the training data, the
necessary calculations can be done off-line using for example the
Cholesky decomposition. The dimension of this matrix is equal to
the number of data points. In our case, this is equal to the number
of example movements NumEx, which is typically not too large
(at most a few hundred). We thus only need to invert a matrix of
dimension NumEx × NumEx.

Note that by writing

z = [K(Q,Q) + σ 2
n I]

−1y. (15)

Eq. (13) and the estimated parameter ȳ∗ associated with the query
Q∗

= q∗ can be written as

ȳ∗
=

NumEx
i=1

k(q∗, qi)zi, (16)

where in our experiments ȳ∗ stands for τ̄ ∗, ḡ∗

l , and w̄∗

kl. Thus the
training data are weighted based on the distance between the
training query points and the current query point. This means that
nearby training points influence the result more. In this sense, GPR
can be viewed as a local regression method.

To generate a new movement, the robot is given a desired
query point q∗, e.g. the desired reaching location. For each of the
parameters defining a generalized DMP (τ , gl, and wkl), which
encodes a suitable motion trajectory for this task situation, we
need to calculate (16) on-line, whereas (15) can be stored in
memory. Note also that matrix K(Q,Q) + σ 2

n I depends only on
query points and not on the data points. Thus this matrix is the
same for all parameters defining a DMP and thus needs to be
inverted only once.

2.3. Comparison with previous local approaches

In our experiments we compare the performance of the
proposed approach and the performance of a method that
uses complete trajectories without an intermediate trajectory
conversion step (as proposed in [5]) for the purpose of task-specific
generalization of dynamicmovement primitives. In this sectionwe
examine the advantages anddisadvantages of both approaches and
their suitability for on-line generalization.

In contrast to our new approach, which converts the training
data into DMPs, the approach proposed in [5] keeps complete tra-
jectories in memory and generalizes to new DMPs without the in-
termediate trajectory conversion step. In this case locallyweighted
regression (LWR) instead of Gaussian process regression has to be
used in some calculations that are needed for trajectory generaliza-
tion. LWR is a memory-oriented, non-parametric method for sta-
tistical approximation. The basic idea is to compute local models
using data from a small neighborhood of the desired query point.



1330 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
Fig. 1. 75 minimum jerk trajectories were used as training data to test the generalization abilities of our approach. The 3-D graph (a) shows the generated Cartesian space
minimum jerk trajectories and 2-D graphs show the associated joint trajectories. (b) shows shoulder flexion–extension, (c) shoulder abduction–adduction, (d) upper arm
rotation and (e) elbow flexion–extension of the right arm of the HOAP-3 robot.
Since raw trajectories are used for estimation, the resulting sys-
tems of linear equations are much too large to be resolved on-line.
Unlike this approach, which defers most of the calculations to the
moment when a query needs to be answered, our new, GPR-based
method performs most of the calculations off-line once all of the
training data have been acquired. The most expensive off-line cal-
culations are needed for the calculation of (15) and for the estima-
tion of hyper-parameters li, σf and σn as defined in (13) and (14).
After the end of learning the training data can be discarded and
only simple calculations shown in (16) are needed to answer a new
query or – in other words – generalize to new situations.

Here we note that in the case of LWR we need to specify
one additional parameter, i.e. influence radius, which determines
how many nearby trajectories will be taken into account for
generalization by LWR. Some approaches for the selection of the
optimal radius can be found in [5]. Our new, GPR-based approach
does not require such a parameter. In the following we call
the approach proposed in this paper MPG (Movement Primitives
Generalization) and the approach from [5] RTG (Raw Trajectories
Generalization).

3. Experimental results

3.1. Simulation results

We first showhowgood the proposedmethod is at generalizing
motor knowledge, which was created in simulation. For this test
we generated 75 minimum jerk trajectories in Cartesian space
with zero velocity and acceleration at the beginning and at the
end of each movement. It has been shown that minimum jerk
trajectories are similar to human arm point-to-point reaching
movements [18]. The simulated Cartesian space trajectories were
converted into joint space trajectories of the right armof humanoid
robot HOAP-3 using inverse kinematics that selected a specific
kinematic solution. This resulted in 75 four-dimensional joint
space trajectories, which were used as training data. The Cartesian
end-positions of trajectories were employed as query points. The
query points were uniformly distributed 3 cm apart within a
cuboid with dimensions 6 × 12 × 12 cm (see Fig. 1). In our tests
we compared how close the generalized trajectories are to the
ideal minimum jerk trajectories and how the proposed method
compares to the method developed in [5], which uses complete
trajectories as input data without the intermediate trajectory
conversion step.

We tested the performance of both approaches by calculating
the generalized trajectories at query points different from the
training queries. We compared the generalized joint space
trajectories with the ideal minimum jerk trajectories in the
Cartesian space. In summary, our experiments show that MPG
calculates the generalized trajectory much faster but with a
slightly larger deviation than RTG. In the following, we analyze
the error in the calculation of DMP goals g and the errors over the
complete course of the trajectories estimated by the two different
approaches.

As evident in (10), at each query point q we need to
calculate the DMP parameters w, g, and τ . In our simulation
example, query points are the end-points on the trajectories
given in the Cartesian space and g are the associated joint
angles at the end of the corresponding joint space trajectories.
Thus in this case GPR attempts to estimate one particular
solution of the inverse kinematics of the arm of HOAP-3. For
testing, query points in Cartesian space given to GPR were
uniformly distributed within the training cuboid with a distance
of 1 cm between them. The error was measured by calculating
the generalized goal g


gjoint,gen = G


{wi, gi, τi; qi}

NumEx
i=1 ; qxyz


,

transforming the generalized goal from the joint space back to
the Cartesian space using known forward kinematics of the arm
(qxyz,gen = FK(gjoint,gen)), and calculating the distance between this
transformed position and the original query point e = ∥qxyz,gen −

qxyz∥. The average difference between these points was 0.8 mm
(see also Fig. 2), which is significantly smaller than the distance
between the training data (3 cm). The analysis of Figs. 2 and
3(a), which depicts the training points (in blue), shows that the
minimal errors appear exactly in the planes that contain the
training queries. Fig. 2 also shows that the error increases if the
query points are between the training points. Finally, extending
the generalization algorithm beyond the training area results in a
rapidly increasing error due to extrapolation.

In simulation we also tested the accuracy of the complete
generalized trajectories as estimated by MPG and RTG. We
compared the results of both approaches with the ideal minimum
jerk trajectories in joint space over the entire trajectories, which



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1331
Fig. 2. Error in the estimation of the DMP goal parameter g (see also the text). Dark blue areas in the graph represent estimation error of less than 1 mm, light blue areas
error between 1 and 2 mm, green between 2 and 3 mm, yellow between 3 and 4 mm, rose between 4 and 5 mm, and red above 5 mm. The average error inside the training
space (x ∈ [0.1, 0.16], y ∈ [−0.19, −0.07], z ∈ [0.08, 0.2]) is 0.8 mm. The error increases rapidly outside of the training space.
Fig. 3. Results of MPG and RTG were compared with the ideal minimum jerk trajectories (in joint space) ending in query points (red dots) situated between the training
points (blue dots) as shown in graph (a). The blue line in graph (c) shows the error in Cartesian space of the reconstructed minimum jerk trajectories in dependence on the
number of weights (here the error is due to inaccurate approximation by DMPs), the red line shows an error of RTG, and the green line shows an error of MPG. Graph (d)
depicts the error in joint space and graph (b) shows calculation times that are needed to perform RTG and MPG. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
end in query points (red dots in Fig. 3(a)) situated between the
training points (blue dots in Fig. 3(a)). We also tested how the
approximation by a different number of weighted radial basis
functions affects the average trajectory error:

errork =
1

Tend,k

Tend,k
i=1

∥yi,k,gen − yi,k,ideal∥,

k = 1, . . . ,NumEx, (17)

errorW =
1

NumEx

NumEx
k=1

errork, (18)

where yi,k are the points on the trajectory k, given either in
Cartesian or in joint space.
Results shown in Fig. 3(c) and (d) demonstrate that RTG reaches
the minimum error sooner and is more stable than MPG, but MPG
also reaches a comparable error minimumwhen a fewmore radial
basis functions are used to encode the DMPs. Fig. 3(b) shows a big
difference in computation times forMPG and RTG as the number of
DMP basis functions increases. MPG generalizes much faster and is
therefore more suitable for on-line calculation. These results also
show that 18 radial basis functions are enough to approximate
the simulated reaching trajectories. With more than 18 weights
the average error does not change significantly regardless of the
selected method. Fig. 4 shows how well some of the generalized
trajectories (encoded with 18 radial basis functions) fit the ideal
minimum jerk trajectories.



1332 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
a b c

d e

Fig. 4. The 3-D graph (a) shows a few calculated minimum jerk trajectories compared with generalized trajectories using MPG and RTG as well as the movement generated
by one training DMP where only the goal of the movement was changed (weights and τ were not generalized). Blue curves are the real minimum jerk trajectories, green
curves are the generalized trajectories estimated by MPG, red curves are the generalized trajectories generated by RTG, and black curves are the trajectories generated by
a DMP with constant weights but different goals. 2-D graphs (b), (c), (d) and (e) show all these trajectories in joint space (as a function of time). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
In cases when only one DMP is available, reaching movements
toward arbitrary points in space can still be generated by
modulating the goal parameter g of the available DMP. However,
the modulated movements do not retain the shape of the
original movement as encoded by the DMP. This is a problem
if the course of movement is important. By utilizing multiple
training examples representing a class of reachingmovements and
statistical generalization,we can generateDMPs that lead the robot
along trajectories of a specific shape. This is especially important
if movements that avoid a certain obstacle need to be generated.
In such cases just the modulation of the goal position without
weights generalization almost always results in a collisionwith the
obstacle.

The number of radial basis functions needed to approximate
the trajectories depends on the type of movement. With MPG we
need to use the same number of basis function to estimate all
training trajectories, otherwise it is not possible to apply Gaussian
process regression. The longer and more complex the trajectories
are, the more radial basis functions are needed to approximate
the movements. The automatic selection of the number of basis
functions is discussed in [19].

To test theMPG and RTG in real experiments, where the correct
trajectories are not known, we applied the leave-one-out cross
validation (L1OCV) to determine the number of necessary basis
functions. In L1OCV, each of the demonstrated trajectories is taken
out from the training data and re-estimated by generalization
from the remaining trajectories. The generalized and the skipped
trajectory are then compared to determine an average error over
the entire trajectory. The L1OCV score is given by an average error
over all trajectories in the training data. To make comparison with
real experiments easier, we also tested the leave-one-out cross
validation with the simulated trajectories (see Fig. 5).

Results in Fig. 5 show that the average Cartesian and joint space
L1OCV scores follow a similar pattern as in Fig. 3. The differences
are due to the different distribution of training and test query
points (here the test query point is always as far away as possible
from the training points, whereas in the previous simulation
experiment we tested the full distribution of query points).
3.2. Reaching and grasping with a humanoid robot HOAP-3

The aim of our next experiment was to show that our method
can be used to teach the humanoid robot HOAP-3 how to reach
for an object and grasp it using data coming from its own visual
system. The training was done by collecting a number of example
reaching movements using kinesthetic guiding along the desired
reaching trajectories. We held the robot’s arm near the right
elbow joint and manually moved it from the initial position to the
desired end-points in front of the robot (Fig. 6). All four joints of
the right arm were collected along the demonstrated trajectories.
Altogether we collected 140 training movements to 3-D locations
that the robot can seewith its cameras. Endpoints were about 5 cm
apart from each other distributed in the workspace of the robot’s
right arm (Fig. 7), which is approximately 30 × 30 × 10 cm.

Besides the trajectories we also measured the final reaching
positions as estimated by the active stereo vision of the robot. The
positions estimated by vision were used as query points. Despite
accurate calibration of the active camera system of a humanoid
robot, some noise and errors are to be expected [20]. By comparing
the results of vision-based 3-D position estimationwith the results
of the robot’s forward kinematics, we estimated the systematic
vision error to be 1.8 cm on average. However, the systematic
vision error can be in part learned by Gaussian process regression.
To collect the vision data, we put a small, colored spherical
object into the robot hand and estimated its position at the final
configuration on the trajectory (see the right graph in Fig. 7). Since
stereo vision is also used to estimate the object position when
generating a newmovement, the vision errors that arise in training
and the errors in query points used for generalization cancel each
other out.

By changing the signs of all four joints of the right arm, wewere
able to transfer the training movements from the right to the left
robot arm (Fig. 7, left). Such simplification was possible due to the
design of the arm of the humanoid robot HOAP-3. Note that it is
still necessary to estimate the end positions on the trajectories by
vision because the error in the estimation of the object position
depends on the configuration of the robot.

After collecting the training trajectories, we calculated the
associated dynamic movement primitives (DMPs). The estimated



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1333
Fig. 5. The evaluation of MPG and RTG using L1OCV method. The blue line in graph (a) shows the Cartesian space error of DMPs encoding the simulated minimum jerk
trajectories in dependence on the number of weights, the green line shows the error of generalization by MPG, and the red line depicts the error of generalization by RTG.
Graph (b) shows the same errors in joint space, graph (c) shows the computational times needed for generalization by MPG and RTG. Graph (d) takes a closer look at
calculation times of MPG. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Image sequence showing the acquisition of one reaching movement on humanoid robot HOAP-3 using kinesthetic guiding. We moved the arm towards the plate
in front of the robot with points plotted at a distance of five centimeters between them. We gradually moved the plate away from the robot and demonstrated a series of
movements at four different distances from the robot.
DMP parameters (weights associated with radial basis functions,
time durations, and end-points of all reaching trajectories in joint
coordinates) were used as input for learning by Gaussian process
regression. To define howmany radial basis functionswere needed
to properly approximate the acquired reaching movements, we
used leave-one-out cross validation as explained above. Results
can be seen in Fig. 8. They are similar to our simulation results.
Again, the calculation time increases with more radial basis
functions defining a DMP. Based on these results we used 27 radial
basis functions to define DMPs because with a larger number
of weights the L1OCW score does not change significantly. A
comparison between the demonstrated trajectories, which were
omitted from the training data, and trajectories generalized by
MPG and RTG can be seen in Fig. 9.

Given a new desired reaching position in Cartesian coordinates
(as estimated by the cameras), i.e. a new query point, the robot
calculates the DMP parameters using Gaussian process regression
as described in Section 2. The generated DMP is then integrated
with Euler’s method and the integration results are used to control
the robot arm. If the object appears anywhere in the robot’s
workspace, HOAP-3 reaches towards the object with a movement
similar to the demonstrated movements (Fig. 10).

When the robot hand reaches the final position, it grasps the
object and moves back to the initial position. If the object position
changes while the arm is moving, the robot uses its vision to
estimate the new object position and calculates the new goal
parameters using Gaussian process regression. The form of the
movement trajectory remains similar to the training trajectories
until the endof the estimatedduration time; afterwards it takes the
form dictated by the critically damped system (1) (the nonlinear
part is close to zero once the time exceeds the estimated duration).
If the robot has not reached the object within the expected time,



1334 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
Fig. 7. The left graph shows example reaching trajectories. The final positions on the trajectories are shown as red dots and the starting positions as green dots. The
trajectories for the left arm of the HOAP-3 robot were created by changing the signs of all four joints of the right arm. In the right graph red dots depict the original end-
points of the right arm of all demonstrated trajectories as calculated by the robot’s forward kinematics, while the blue dots are the same end-points as estimated by stereo
vision. The green lines illustrate the shift of end-points, which is 1.8 cm on average. This represents a systematic error of stereo vision. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. The results of MPG and RTG were compared with the example trajectories by leave-one-out cross validation method. In graph (a), the red line shows L1OCW score
obtained by RTG and the green line represents an L1OCW score obtained by MPG, all in Cartesian space. Graph (b) represents the L1OCW score in joint space and graph
(c) shows calculation times that are needed for MPG and RTG, all in dependence on the number of weights. Graph (d) takes a closer look at calculation times of MPG. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
we continue to estimate the goal parameters g by vision and GPR,
which ensures that the robot eventually reaches the object.

Figs. 11 and 12 show two reaching examples where the
robot motion is continuously adapted to the current situation. In
this experiment we show the integration between the proposed
approach and walking to ensure that the robot can grasp an
object. A similar experiment on a humanoid robot but based on
more classic robotics approaches has been reported in [21]. If the
object falls outside of the robot’s workspace, HOAP-3 estimates
the distance between the object and the robot’s base coordinate
system with its cameras and starts walking to come closer to the
object. A predefined walking pattern was used for this purpose.
While walking, the robot tracks the object and keeps estimating
the distance to the object. This information is used to estimate
how many intermediate steps are needed to reach the goal. The



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1335
Fig. 9. A few examples comparing the demonstrated trajectories (blue curves), whichwere omitted from the training data, and trajectories calculated byMPG (green curves)
and by RTG (red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Top row: the blue trajectories are nearby demonstrated trajectories, the green curves are the generalized trajectories estimated by MPG, and the red curves are
generated by RTG. Notice the shape similarity between these trajectories. Bottom row: the blue trajectories show the generalized right hand movement if the object does
not move. The green trajectories depict the actual right hand movement, which changed because the attractor point g was continuously adapted using the results of vision
and Gaussian process regression. The red trajectories show the movement of the object as estimated by stereo vision. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
robot also adapts its orientation to ensure that it walks towards
the object and finally grasps it.

As mentioned previously, the systematic error of stereo vision
was partly learned by GPR and was consecutively reduced, but
the error due to imperfect generalization by GPR remains. To
test the generalization accuracy of GPR in a real experiment, the
error of the method was estimated in the same way as in the
simulation example. The test points, where the regression error
was measured, were distributed on a regular grid with a distance
of 1 cm between the end points inside the right arm workspace.
Fig. 13 shows the difference between test points and 3-D position
of those points as estimated by Gaussian process regression and
robot forward kinematics. Here the error of GPR is 7.3 mm on
average, which is low enough for the given task of grasping. The
error in the case of real data is larger than in simulation, but this
can be expected because the distribution of the simulated datawas
more compact, more regular and there was no noise. The error due
to inaccuracy of GPR can be reduced by providing more training



1336 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
Fig. 11. HOAP-3 detects the object and keeps tracking it. Once the object stops moving, the robot can grasp it and move the arm back to its starting position.
Fig. 12. If the object is outside of the robot’s workspace, HOAP-3 uses vision to estimate the distance between the object and its base coordinate system and starts walking
to come closer to the object. A predefined walking pattern was used for this task.
Fig. 13. Dark blue fields in the graph represent GPR error of less than 5mm, light blue between 5 and 10mm, green between 10 and 15mm, yellow between 15 and 20mm,
rose between 20 and 25 mm and above 25 mm error are the red fields. The average error of this real-task endpoints is 7.3 mm.
data. However, a larger number of training examples requiresmore
time and effort to acquire, so there is a trade-off between accuracy
and training time.

3.3. Switching between two different movement primitives

Our final experiment was performed with the 7 DOF KUKA
Light-Weight Robot arm. The main goal of this experiment was
to demonstrate on-line generalization of trajectories, which can
be accomplished only with our new approach (MPG) because RTG
is too slow. The task was to reach towards an object and grasp
it. The object can be grasped either from its right or from its left
side. Thus the robot needs to learn how to grasp the object from
both sides. We demonstrated 144 reaching movements (72 from
the right side and 72 from the left side of the object), which were
all acquired by kinesthetic guiding of the arm (see Fig. 14). For
this task, the DMP-encoded training data was given in joint space.
Unlike in the experiments with HOAP-3, initial points on the



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1337
Fig. 14. Pictures show the acquisition of reaching movements by kinesthetic guiding of KUKA Light-Weight Robot arm. The graph shows 144 reaching movements that
were performed, 72 from the right side and 72 from the left side of the object. The starting positions on the trajectories are shown as black dots (green in the web version)
and the final positions as grey (red in the web version) dots.
Fig. 15. Reaching and grasping under physical disturbances as performed by Kuka Light-Weight Robot arm. Green curves are the generalized trajectories while blue curves
are the nearby demonstrated trajectories. Red curves show the robotmotion under physical disturbance. In all graphs the initial, generalized reachingmovement encounters a
physical disturbance and is pushed to a different position fromwhere the new generalizedmovement is started. Graphs also showhow the initial reachingmovementswould
look like if there were no physical disturbances. The rightmost graph shows how the robot reshapes its initial joint space configuration (the beginning of the second green
curve after perturbation) when themovement primitive changes. In this way the generalized trajectory becomesmore similar to the training trajectories. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
training trajectories in Cartesian space were used as query points.
Cartesian space position of the end-effector determines whether
the robot is on the left or right side of the object. Based on this
we select the appropriate set of training movements to generate a
successful grasping trajectory. We show the performance of real-
time generalization in a task in which the robot switches between
two different types of trajectories (for left- and right-side grasps)
in the case of perturbations.

The KUKA armwas controlled in stiffnessmode.While reaching
the stiffness is high enough to properly perform the generalized
reaching movement. The external joint torques are monitored
during execution. If joint torques exceed a threshold (determined
empirically), the algorithm switches to a lower stiffness mode,
knowing that a physical disturbance occurred. During low stiffness
mode the robot is compliant enough to move in the direction of
perturbation. Meanwhile, new generalized reaching movements
are constantly calculated (every 0.03 s) based on the current
position of the robot’s end-effector. When the perturbation stops,
the newest generalized reaching movement starts being executed.
If for example the robot starts reaching from the right side of the
object and the perturbation causes it to move to the left side, the
algorithm switches from right- to left-side reaching movement.
The object is grasped once the robot reaches the end-position
on the reaching trajectory. We used a BarrettHand BH-8 Series
attached at the top of the arm for grasping. The described reaching
and grasping behavior is shown in Figs. 15–17.

4. Conclusion

Wedeveloped a new approach for on-line generalization of dis-
crete movements based on Gaussian process regression. The pro-
posed methodology was inspired by motor tape theories [22] and
motor schemas [23], in which example movement trajectories are
stored directly in memory [24]. Unlike previous generalization ap-
proaches, which either required significant on-line calculations [5]
or global optimization [2] prone to local minima, the proposed
approach can avoid both. Our experiments have shown that de-
spite significant data reduction, which provides the basis for a real-
time implementation of the proposedmethodology, the generated
movements remain close to the ideal movements. The real-time
implementation enabled us to realize tasks such as on-line switch-
ing between movement primitives based on perceptual feedback,
which would not be possible with previous memory-based ap-
proaches.

Acknowledgments

This work was supported in part by the European Union
Cognitive Systems Project Xperience under Grant FP7-ICT-2009-6-
270273, Slovenian Research Agency grant J2-2348, ‘‘BrainMachine



1338 D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339
Fig. 16. Reachingwith Light-Weight Robot arm is by default controlled in high-stiffnessmode. The joint torques aremonitored during execution and if a physical disturbance
occurs, the algorithm switches to the low stiffness mode where the robot is compliant enough to be pushed to any position from where the new generalized reaching
movement is started.
Fig. 17. The 3-D graph illustrates themotion of the Light-Weight Robot arm shown
in Fig. 16. Green curves show the generalized trajectories, while blue curves are the
nearby demonstrated trajectories. Red curves depict the perturbed robot motion.
The beginning of the third green curve shows how the robot reshapes its initial joint
configuration when switching to a new movement primitive. This is not necessary
if the movement primitive does not change.(For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Interface Development’’, SBRPS, MEXT, and Grant-in-Aid for
Scientific Research on Innovative Areas: Prediction and Decision
Making 23120004.
References

[1] S. Calinon, F. D’halluin, E.L. Sauser, D.G. Caldwell, A. Billard, Learning
and reproduction of gestures by imitation: an approach based on hidden
Markov model and Gaussian mixture regression, IEEE Robotics & Automation
Magazine 7 (2) (2010) 44–54.

[2] E. Gribovskaya, S.M. Khansari-Zadeh, A. Billard, Learning non-linearmultivari-
ate dynamics of motion in robotic manipulators, The International Journal of
Robotics Research 30 (1) (2011) 80–117.

[3] V. Krüger, D. Herzog, S. Baby, A. Ude, D. Kragic, Learning actions from
observations, IEEE Robotics and Automation Magazine 17 (2) (2010) 30–43.

[4] C. Liu, C.G. Atkeson, Standing balance control using a trajectory library, in: Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2009, pp. 3031–3036.

[5] A. Ude, A. Gams, T. Asfour, J. Morimoto, Task-specific generalization of discrete
and periodic dynamic movement primitives, IEEE Transactions on Robotics
and Automation 26 (5) (2010) 800–815.

[6] D. Bentivegna, C.G. Atkeson, G. Cheng, Learning tasks from observation and
practice, Robotics and Autonomous Systems 47 (2–3) (2004) 163–169.

[7] R. Dillmann, Teaching and learning of robot tasks via observation of human
performance, Robotics and Autonomous Systems 47 (2–3) (2004) 109–116.

[8] D. Kulić, W. Takano, Y. Nakamura, Online segmentation and clustering from
continuous observation of whole bodymotions, IEEE Transactions on Robotics
and Automation 25 (5) (2009) 1158–1166.

[9] C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning, Artificial
Intelligence Review 11 (1997) 11–73.

[10] C.E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT
Press, Cambridge, MA, 2006.

[11] A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning rhythmic movements by
demonstration using nonlinear oscillators, in: Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, Lausanne, Switzerland, 2002, pp. 958–963.

[12] A.J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear
dynamical systems in humanoid robots, in: Proc. IEEE Int. Conf. Robotics and
Automation, Washington, DC, 2002, pp. 1398–1403.

[13] S. Schaal, P. Mohajerian, A. Ijspeert, Dynamics systems vs. optimal control—a
unifying view, Progress in Brain Research 165 (6) (2007) 425–445.



D. Forte et al. / Robotics and Autonomous Systems 60 (2012) 1327–1339 1339
[14] P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, Learning and generalization of
motor skills by learning from demonstration, in: Proc. IEEE Int. Conf. Robotics
and Automation, Kobe, Japan, 2009, pp. 763–769.

[15] M. Hersch, F. Guenter, S. Calinon, A. Billard, Dynamical systemmodulation for
robot learning via kinesthetic demonstrations, IEEE Transactions on Robotics
and Automation 24 (6) (2008) 1463–1467.

[16] A. Ude, C.G. Atkeson, M. Riley, Programming full-body movements for
humanoid robots by observation, Robotics and Autonomous Systems 47 (2–3)
(2004) 93–108.

[17] D. Nguyen-Tuong, M. Seeger, J. Peters, Model learning with local Gaussian
process regression, Advanced Robotics 23 (2009) 2015–2034.

[18] T. Flash, N. Hogan, The coordination of arm movements: an experimentally
confirmed mathematical model, The Journal of Neuroscience 5 (7) (1985)
1688–1703.

[19] S. Schaal, C.G. Atkeson, Constructive incremental learning from only local
information, Neural Computation 10 (8) (1998) 2047–2084.

[20] A. Ude, E. Oztop, Active 3-D vision on a humanoid head, in: Proc. 14th Int. Conf.
Advanced Robotics, Munich, Germany, 2009.

[21] O. Stasse, B. Verrelst, A. Davison, N. Mansard, F. Said, B. Vanderborght,
C. Esteves, K. Yokoi, Integrating walking and vision to increase humanoid
autonomy, International Journal of Humanoid Robotics 5 (2) (2008) 287–310.

[22] C.G. Atkeson, J. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal, T. Shibata, G.
Tevatia, A. Ude, S. Vijayakumar, M. Kawato, Using humanoid robots to study
human behavior, IEEE Intelligent Systems 15 (4) (2000) 46–56.

[23] R.A. Schmidt, A schema theory of discrete motor skill learning, Psychological
Review 82 (1975) 225–260.

[24] T. Poggio, E. Bizzi, Generalization in vision and motor control, Nature 431
(2004) 768–774.

Denis Forte received the Diploma degree from the Uni-
versity of Ljubljana, Ljubljana, Slovenia, in 2009. He is
currently a Ph.D. student with the Department of Auto-
matics, Biocybernetics, and Robotics, Jožef Stefan Institute,
Ljubljana. He was a Visiting Researcher at the Computa-
tional Neuroscience Laboratories, Advanced Telecommu-
nications Research Institute International, Kyoto, Japan, in
summer 2010. His research interests include robot learn-
ing by statistical methods and automatic feature selection.
Andrej Gams received the Ph.D. degree in robotics from
the University of Ljubljana, Ljubljana, Slovenia, in 2009. He
is currently a Postdoctoral Assistant with the Department
of Automatics, Biocybernetics, and Robotics, Jožef Stefan
Institute, Ljubljana. He performed a part of his doctoral
research with the Biologically Inspired Robotics Group,
Ecole Polytechnique Federale de Lausanne, Lausanne,
Switzerland. Hewas a Visiting Researcher at the Computa-
tional Neuroscience Laboratories, Advanced Telecommu-
nications Research Institute International, Kyoto, Japan, in
summer 2009. His research interests include human arm

motion, learning by imitation and imitation of rhythmic tasks.

Jun Morimoto received the Ph.D. degree in information
science from the Nara Institute of Science and Technology,
Nara, Japan, in 2001. From 2001 to 2002, hewas a Postdoc-
toral Fellow with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA. Since 2002, he has been with
the Advanced Telecommunications Research Institute In-
ternational, Kyoto, Japan, where he was a Researcher
with the Computational Brain Project, International Co-
operative Research Project, Japan Science and Technology
Agency, from 2004 to 2009, and is currently the Head of
the Department of Brain Robot Interface, Computational

Neuroscience Laboratories.

Aleš Ude received the Diploma degree in applied mathe-
matics from the University of Ljubljana, Ljubljana, Slove-
nia, in 1990, and the Ph.D. degree from the Faculty of
Informatics, University of Karlsruhe, Karlsruhe, Germany,
in 1995. He is currently a Senior Research Associate
with the Department of Automatics, Biocybernetics, and
Robotics, Jožef Stefan Institute, Ljubljana. He is also with
the Computational Neuroscience Laboratories, Advanced
Telecommunications Research Institute International, Ky-
oto, Japan. His research interests include imitation learn-
ing, perception of human activity, humanoid robot vision,

and humanoid cognition. Dr. Ude is a recipient of the Science and Technology
Agency fellowship for postdoctoral studies with the Exploratory Research for Ad-
vanced Technology (ERATO) Kawato Dynamic Brain Project, Japan.


	On-line motion synthesis and adaptation using a trajectory database
	Introduction
	Approximation of a class of movements with Gaussian process regression
	Converting the example trajectories into dynamic movement primitives
	Trajectory generalization using Gaussian process regression
	Comparison with previous local approaches

	Experimental results
	Simulation results
	Reaching and grasping with a humanoid robot HOAP-3
	Switching between two different movement primitives

	Conclusion
	Acknowledgments
	References


