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Abstract 

Llde, A., Trajectory generation from noisy positions of object features for teaching robot paths, Robotics and Autonomous 
Systems, 11 (1993) 113-127. 

In this paper we discuss a method for generating a trajectory describing robot path using a sequence of noisy positions of 
features belonging to a moving object obtained from a robot's sensor system. In order to accurately estimate this trajectory 
we show how uncertainties in the positions of object feature points can be converted into uncertainties in parameters 
describing the object pose (3-D position and orientation). Noisy estimations of the object poses, together with their 
uncertainties, are then used as an input to an algorithm that approximates the trajectory describing the robot path. The 
algorithm is based on natural vector splines and belongs to a family of non-parametric regression techniques which enable 
the estimation of the trajectory without requiring its functional form to be known. Since dilemma between specifying the 
trajectory either in Cartesian or in joint coordinates always exists, we present both alternatives. Some simulation results are 
given which illustrate the accuracy of the approach. 

Keywords: Vision-based robot programming; Robot path planning; Smoothing splines; Motion estimation; Uncertainty 

1. I n t r o d u c t i o n  

Robot programming is a critical factor in achieving flexibility in robot applications. Intelligent robot 
systems must possess the ability to interact with human operators efficiently in order to accomplish a 
variety of tasks within a short period of time. Present teaching methods as teach-in, play-back and 
programming in robot language systems with or without an interface to a CAD system cannot fulfill this 
requirement. To overcome this difficulty, most of the present research in the field of robot programming 
was concentrated on programming with different relief systems such as kinematical models of the robot 
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to be taught and 3-D sensor systems. Our research falls into the latter category. It deals with a 
development of a teaching method which will enable the operator with expertise only in a target task and 
without any specialized knowledge in robotics to program robot paths quickly. 

Our method represents a variant of 'Teaching by Showing' [11,12] and is based on the use of a robot's 
visual system. We have selected binocular stereo as a cheap and common method for sensing 3-D 
structure of a workcelt. The basic idea is as follows: the operator first moves an object to be manipulated 
(or a specially designed teaching tool) along the prespecified trajectory. The action is recorded and 
reconstructed by an image analysis system which produces a list of discrete and noisy object poses as its 
output. Using these noisy measurements, a smooth and continuous approximation of the true trajectory 
is generated. Finally, a program in a robot language system is generated and the robot is ready to execute 
the task. Our system, which is still under development, comprises the following functions: 

(i) The extraction of the image features from a stereo image sequence. 
(ii) The simultaneous matching of the image features extracted from a stereo image pair with the 

modelled object features and the object tracking. 
(iii) The computation of 3-D object poses together with their uncertainties and the estimation of the 

object's trajectory. 
(iv) The transformation of the trajectory into the robot language system. 
The assumption that the underlying camera system is binocular stereo has its role in the first two stages 
of the process. Our imaging computer can produce separate lists of extracted image features such as 
distinct points or straight line segments from a stereo image pair in real-time. The proposed matching 
procedure and object tracking algorithms are completely based on a CAD model of the moving object 
and will be described elsewhere. Only the third stage of our system is considered in this article, i.e. we 
concentrate on the task of estimating the trajectory of the moving object for teaching robot paths when 
range data and the 3-D model of the object are available. Most of the results are valid for any range 
sensor which enables measurement of 3-D positions of object feature points and estimation of uncertain- 
ties in these measurements. The binocular stereo assumption is only used to illustrate the approach. For 
a review of range sensors used in robotics see Nitzan [16]. 

We assume in this article that image feature points have been extracted from each pair of stereo 
images, that they have been related to the object feature points and that they have been tracked through 
the whole sequence. A sequence of poses of the moving object can then be computed. In previous 
systems similar to ours [11], only a couple of important passing points such as approach-point, grip-point, 
and withdraw-point on the object's trajectory could have been programmed. But in many applications, 
for instance in the presence of obstacles, the whole trajectory of the robot's end-effector must be 
controlled. 

A lot of research has been done in 3-D motion estimation from long image sequences in recent years. 
Most of it assumes a model for 3-D rigid body motion. For instance, a motion estimation scheme based 
on superposition of constant precession rotational motion and polynomial translational motion has been 
proposed. The parameters of the model are estimated by applying a least-squares criterion [21] or an 
extended Kalman filter [22]. Although this and similar approaches may allow the parameters of the 
model to evolve in time, they are not applicable to our problem since we are looking for a smooth 
estimate of the object's trajectory over a longer period of time without assuming a specific parametrical 
model for the rigid body motion. Furthermore, these approaches primarily concentrate on the estimation 
of the object motion parameters rather than the object trajectory which is a more meaningful quantity in 
terms of robot tasks such as for example a pick and place operation. In this article we propose a new 
method which concentrates on the estimation of the moving object's trajectory. 

It is a common belief among vision researchers that uncertainties in image features must be 
considered explicitly in order to obtain accurate results when estimating motion parameters of a moving 
object. It has been reported [15] that the uncertainties in the reconstructed 3-D coordinates of the object 
feature points obtained from a binocular stereo system can be modelled as Gaussian which leads to a 
good performance in motion analysis. An interesting method to relate the uncertainties in the recon- 
structed feature point positions to the uncertainties in the parameters describing the object pose has 
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been proposed in [13]. Unfortunately, the non-minimal representation of the orientation by quaternions 
used there is not appropriate for our application. For this reason we modified the approach to work with 
the minimal representation of the orientation by rotation vectors. We also developed an alternative 
approach in which the pose and the uncertainties are obtained directly from the projected object 
features. 

We applied a non-parametric regression technique based on smoothing vector splines in order to 
obtain a smooth estimate of the object's trajectory. Non-parametric regression using smoothing splines is 
a flexible and widely-applicable approach to curve estimation [20,6,19]. The possibility of the automatic 
choice of the amount of smoothing makes it particularly attractive. We present how the trajectory in the 
Cartesian space can be generated from a sequence of object poses together with their uncertainties 
previously extracted from a sequence of stereo images using smoothing vector splines. As it is well 
known, Cartesian paths are prone to various difficulties relating to workspace and singularities [4]. 
Furthermore, they must be converted into equivalent joint quantities at run-time which can represent a 
significant computational burden. For these reasons we outline an algorithm for the reconstruction of the 
trajectory in the robot's joint space as well. 

This article is divided into six sections. In Section 2 calculation and representation of the pose in the 
form suitable for the object's trajectory reconstruction is discussed. Section 3 relates the uncertainties in 
the estimated feature point positions to the uncertainties in the parameters determining the pose. 
Section 4 discusses estimation of the moving object's trajectory while some experimental results are given 
in Section 5. The concluding remarks are gathered in Section 6. 

2. Calculating and representing the object pose 

To study the pose of the rigid object, we rigidly attach a coordinate frame, called object-centered 
coordinate frame, to it. For simplicity we assume that all object feature points are visible in each stereo 
image pair. The centroid of the feature points is chosen to be the origin of the object-centered 
coordinate frame. We consider motions of the object as motions of the frame attached to the moving 
object relative to the frame attached to the stationary object. The frame attached to the stationary object 
is assumed to coincide with the world coordinate system. Let the feature points of the stationary object 
be {mi}i~ 1. A displacement of every feature point p/' belonging to the moving object from its initial to its 
current position is given by 

p" = R ' m  i + t ' ,  (1 )  

where R'  is a 3 x 3 rotat ion matr ix  and t '  is a 3-D translation vector.  At least three noncolinear points 
are needed in order to obtain both t '  and R' without ambiguity. However, in the presence of noise, 
which is unavoidable in image processing, the positions of the estimated object feature points Pi returned 
by the system differ from the positions of the actual object feature points p ' :  

p i = P "  + e i ,  i =  l . . . .  , n ,  (2) 

where e i are zero mean, mutually independent random vectors. Therefore R'  and t '  can be obtained 
only approximately by minimizing 

p i - - ( ~ n i - J r t )  2 ( 3 )  

i=l 
over all rotation matrices/~ and over all translation vectors i. Defining p = 1 /nE~= lPi,  m = 1/n~, i% lmi  

and v~ = P i -  P,  i = 1 . . . . .  n,  it has been shown [10] that the solution to (3) is given by t = p  - R m  = p  
(since we assume that the centroid m coincides with the origin of the world coordinate system) and by R 
mlntmlzmg 

n n 

E Ilvi-' (m,-m)ll 2-- E IIv/- ;ll 2 (4) 
i = 1  i = l  
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over all rotation matrices. It follows that the translational and the orientational component of the 
displacement can be estimated separately. We have used a closed-form solution given in [1] to determine 
the optimal rotation matrix. 

The pose of the object can be parametrized by the rotation matrix R and the translation vector t = p. 
While a parametrization of the translation by p fulfills the requirement that a parametrization must be 
minimal, the same is not true for a parametrization of the orientation by the rotation matrix R. If 
non-minimal representations were used, the singularities in covariance matrices describing the uncertain- 
ties in the estimated poses could not be avoided. Moreover, the dimensionality of the problem of 
approximating the object trajectory would be increased and since non-minimal representations are 
subject to constraints, the problem would become constrained. Among several minimal representations 
of orientation we have chosen a parametrization by a 3-D rotation vector r because it does not contain, 
unlike in robotics frequently used Euler angles, any singularities. The rotation vector is defined by 
r = On, where n is a unit vector in the direction of the axis of rotation and 0 is the angle of rotation 
about this axis. Defining antisymmetric matrix X(r)  to be 

0 -- r z ry ] 

X ( r )  = r z 0 - r  x ], 
0 - -  ry r x 

every rotation matrix can be written as 

R (  r )  = e x ( ' )  = I + sin( O)X( n) + (1 - cos( O) ) X (  n) 2, 

which is just the Rodrigues' formula for the rotation R(n, 0). An inverse mapping of the rotation matrix 
into the rotation vector is given in [2] and is used to convert the rotation matrix obtained by minimizing 
(4) into the rotation vector. 

Let the underlying camera system be binocular stereo and let both cameras be modelled by a simple 
pinhole camera model. Let B l = [ b j ,  B r = [bri j] be the 3 × 4 calibration matrices mapping the object 
points given in homogeneous coordinates [18] into the left and right image, let uu= [x~, yl~] x, 
Uri = [Xri,Yri] T be the projections of the point Pi into the left and right image plane and let A l and A r 
be the mappings into the left and right image plane, respectively: 

Ul(r)i = A l ( r ) ( P i )  = 

bl(r)ll Pi I .-1- bl(r)12Pi 2 .-k bl(r)13Pi 3 .-k bl(r)14 ] 

bl(r)31Pi 1 + bl(r)32Pi 2 + bl(r)33Pi 3 .-I- bl(r)34 ] bl(r)21Pil + bl(r)22Pi2 + bl(r)23Pi3 + hi(r)24 " 

bl(r)31Pil + bl(r)32Pi2 + bl(r)33Pi 3 + hi(r)34 

(5)  

triangulation equations [18]: 

pi -- h(u i, uri) = (pTp)- pTz, 
b i l l  - b l 3 1 X l i  b l 1 2 - b 1 3 2 X l i  

b121 - b131Y|i  bl22 - b132Yli 

p = I b m  - br31Xri br12 -- br32Xri 

I_ br21 - br31Yri br22 --  br32Yri 

b l l  3 - b133Xli]  

b123 - b133Yli / 

br l3 - br33Xr i l '  

br23 - br33Yri J 

b134Xli -- bn4 ] 
b134Y li - b124 [ 

Z ~ br34Xr  i _ br14 [ . 

br34Yri - br24 _[ 

(6)  

However, in the presence of noise, the computed location is only an approximation of the true 
location. As illustrated in Fig. 1 for errors caused by quantization, the estimated location of Pi can tie 
anywhere in the shaded region surrounding the true location [15]. It is common to assume that errors in 
image feature point coordinates Ul~, Ur~ are mutually independent and Gaussian [15,13] with covariance 
matrices ~r2V~ and o'2Vrr As we shall see later the actual scale parameter cr is not needed during the 

Given the measurements uti, Uri , the 3-D position of the point p~ used in (2) can be obtained by use of 
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Fig. 1. Stereo geometry showing triangulation uncertainty (aligned cameras). 

approximation process. If we further assume that the pixels are quadratic, then one may often set 
V i i  = Vr i  = ]2, where I 2 is a 2 X 2 identity matrix. With these assumptions, one can estimate the object 
pose directly from the image points matched with the object points without using triangulation formulae 
first: 

n 

minimize ~ [[uli - AI(R( # ) m  i + t)[1271 + [[u,i- A , (  g (  ~ ) m  i + i )  2 I[v~l, (7) 
i ff i l  

over all translation vectors i and over all rotation vectors #. R(#) denotes the rotation matrix 
corresponding to the rotation vector ~. We have used the notation 

I) x = x T  Vx .  

This minimization problem is a highly nonlinear one and can be solved only iteratively with the help of 
the Levenberg-Marquardt method for solving nonlinear least-squares problems. Note that Eq. (7) can be 
extended to include the feature points observed by only one of both cameras. Furthermore, by leaving 
out the terms belonging to one of the cameras, the object pose can be calculated even when only one 
camera is available (since the structure of the object is known). The object pose obtained by minimizing 
(7) is more accurate than the one calculated by using the triangulation formulae (6) first and by 
minimizing (3) afterwards. On the other hand, minimizing (3) can be performed with noniterative 
methods. It is possible to consider the uncertainties also when determining the pose by use of 3-D object 
point positions as in (3). However, the resulting minimization problem can again be solved only 
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iteratively. Since minimization of (7) gives better results, we shall not consider this possibility in the rest 
of the paper. The object pose and its uncertainties can also be calculated when other image features are 
used. For the case of straight line segment correspondences see [23]. 

3. Modelling of uncertainties in the object pose 

Let us assume that 3-D feature point positions pg were obtained by use of triangulation Eqs. (6) and 
that the distribution of noise in image feature points is Gaussian. Since triangulation is a nonlinear 
mapping, the true distribution of noise in 3-D feature point positions is in general non-Gaussian (see [3] 
for the case of quantization errors). Nevertheless, it may be approximated as Gaussian [15] with mean at 
h(Ul i  , Uri) and covariance matrix O'2~/, w h e r e  

° 1 0 Vr i J i T ~ R  3X3, (8 )  

Jg is the 3 × 4 Jacobian of the mapping h at (uli, uri). This approximation holds true when the distance 
between object feature points and both cameras is not too large or, equivalently, when the disparity 
between image feature points is not too small [15,13]. The Jacobian of the mapping h can be easily 
computed using the chain rule for the derivative of a product of two matrix functions and the following 
formula for the derivative of an inverse of a matrix function: 

( P ( x ) - 1 ) ' =  - P ( x ) - 1 p ( x ) ' P ( x ) - 1  

We are interested in the distribution of error in the parameters describing the pose. We first consider 
the case when the pose is obtained by minimizing (3). The estimated translation vector t fulfills 

1 n 1 n 1 n 

t = p = -n i=~lpg = -n i ~=lP: + ei = t '  + -n i=~lei . (9 )  

Let  e i be, as in Eq. (2), zero mean, mutually independent and normally distributed random vectors with 
covariance matrices ~r2V/. In the case of binocular stereo, the covariances can be estimated by (8). It 
follows from (9) that the translation vector t is normally distributed, too, with covariance matrix tr2,yp, 
where 

1 " 
= E- (lO) 

The estimation of the covariance of the rotation vector requires more effort. We proceed somehow 
similar as in [13]. First we relate the true rotation R'  to the estimated rotation R by use of a differential 
rotation matrix OR: 

R ' =  6RR. (11) 

With reference to (1), (2), (9), and using the fact that multiplication with the orthogorml matrix ~R 
preserves the norm, we may write R ' m  i = p [ - t '  = p i - p  + (1 /nF~=le  i - e i ) = v  i + fi.  Therefore mini- 
mum of (4) is achieved at 

g(R) = E ii g-P gll - - IIv,- 8R R',,,II2- - E H ( S R - I ) v g - f i H  2. 
i=1 g=l i=l 

Assuming a small rotation angle and neglecting higher order terms, the differential rotation matrix can 
be estimated by 8R ~. I + X ( e )  [9], where ex, % and e z are small rotations around the coordinate axes. 
With this approximation we can write: 

g ( R )  ~ IIx( 
n 

--- e ) vg - f i l l 2  = E IIx(- g)e-f, II 2 (12) 
g=l iffil 
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Hence minimization of (4) for the rotation matrix R is equivalent to the minimization of (12) for the 
differential rotation vector ~. But this is equivalent to solving the overdetermined system Ae = f  in a 
least-squares sense, where 

A = , A E R  3nx3  and f =  , f E R  3n. } 
The solution to this problem is e = A +f, where A + denotes the pseudoinverse of the matrix A. Since f 
can be written as 

[eli f = B . . . ,  B= 
en 

It11/i3 1 
-/3 
n 

1,3 (11),3 
. o .  

1 1 
-I3 n / 3  n 

O ~ • 

O e Q 

1 
-/3 
n 

1 
-/3 
n 

(1-I)/3n 

B ~ R 3nx3n, 

where 13 is a 3 × 3 identity matrix, we have e =A+Be. We are interested in the distribution of noise 
contained in the rotation vector r. To obtain this, we must relate e to d r  -- r '  - r, where R '  = e x(r') and 
R -- e x('). We can write two first order approximations for R':  

R ' - . R + X ( e ) R ,  (13) 

OR OR OR 
R' = R + --dr x + --dry +--dr z =R + X( H(r) dr)R, (14) 

~r x Ory ar z 

where 

H(r)  = 

and 

2 h(O)r x +f(O) 

h(O)rxry+g(O)rz 

h(O)rxrz-g(O)ry 

h(O)rxry-g(O)rz 

h(O)r~+f(O) 

h(O)ryrz+g(O)~ 

h(O)rxr z + g(O)ry ] 

h(O)ryr z - g(O)r x [ 

h(O)r 2+f(O) J 

(15) 

sin(0) 1 - COS(0) 1 - f (O)  
0=llrll, f(0)= o , g(o)--= o2 , h(O)--=- 02 

For the proof of (14) see [2]. It can be shown that the matrix H(r) is invertible everywhere. By equating 
both first order terms we obtain X(e)=X(H(r )  dr)  or, equivalently, d r  = H(r)-le = H(r)-¼+Be. The 
covariance of the rotation vector can thus be approximated by ~r2Zr, where 

~r = H(r)  -1A+B diag(V/) ( H ( r )  -1A+B)T. (16) 

Let p / b e  the translation vectors and let ry be the rotation vectors which minimize (3) at the time instants 
N 2 2 {tJ)= 1 at which the stereo images are recorded. Let o" "~vJ and o" "~rj be the covariance matrices of the 

translation and the rotation vector at the time instants tj calculated as given in (10) and (16), 
respectively. Let vector functions a and /3 respectively represent the true trajectory of the translation 
vector and the rotation vector. We have arrived to the following regression Model 1: 

vj--,,(t;) 
ry----fl(tj) +¢j ,  ] ' j =  1 , . . . , N ,  (17) 
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where ~j and -r/form a set of zero mean, mutually independent random vectors with covariance matrices 
o-2,~pi and tr2,~rj, respectively. The vector functions a and fl are usually referred to as the regression 
curves. When this model is used, the translational and the orientational part of the pose can be 
estimated separately. 

If the translation vector pj and the rotation vector rj are calculated by minimizing (7), the uncertain- 
ties can be estimated as well. Denoting 

A,(R( ~)m, + i)  

+ i) 
g(i) . . . .  

A , ( R ( P ) m N + i )  

Ar( R( ~)mu + i) 

(7) can be rewritten as 

(// - -g (s ) )Tv- I (~[ - -g(S) ) .  

//11 ] 

, u : l ? : :  ], g = [ ~ ] ,  V=diag(Vn,  Vrl, '" ,VIN, VrN)' 
In,N/ 
k/grN.J 

(18) 

(19) 

The covariance matrix of the minimizer of (19), or equivalently of (7), is given by O'2,~b, where 
Og 

~b = ( j T v - 1 j ) - I ,  j =  -~s (S ). (20) 

ag/as(s) denotes the Jacobian of g computed at the solution s = [pT, rT]T of (7). Hence the minimiza- 
tion of (7) results in the following regression Model 2: 

y(ty) =sy+i,/, (21) 

where sj = [pT, rf]T are the minimizers of (7) at the time instants {tj}~_ 1, p~ are zero mean, mutually 
independent random vectors with the covariance matrices cr2,~b/ obtained from (20), and y is the true 
trajectory. Note that in the regression Model 1 the uncertainties in the translation and the rotation 
vector are decoupled, which is not the case in Model 2. It follows that the translational and the 
orientational part of the pose must be estimated simultaneously in this case. However, Model 2 is the 
more accurate one. 

Because of the advantages of trajectories specified in a robot joint space, one is often tempted to 
estimate the trajectory at the joint level. This can be done provided the kinematics of the manipulator is 
known. Let k : R  6--) R 6 be the mapping representing the direct kinematics of a manipulator with six 
degrees of freedom. Given a set of object poses sj together with their covariance matrices cr2~ which 
can be obtained either by use of Model 1 or Model 2, one can convert them into the joint coordinates 
using the formulae: 

 J=JJ%C, JJ= (22)  

In this case, we obtain the following regression Model 3: 

qy =x(ty) + ey, J = 1 . . . . .  N, (23) 

where X is the true joint trajectory and ,p/ are zero mean, mutually independt random vectors with 
covariance matrices o2q'/. 

4. Estimation of the oi~ect's 

After the whole motion of the object has been recorded and tracked, we are given the regression 
Model 1, 2, or 3. All of them have the following general form: 

zi  = 0 ( t  j )  + , , j ,  j = 1 . . . . .  N ,  (24)  
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where zj ~ R M are the mesurements, O is the true trajectory and K i are zero mean, independent  random 
vectors with covariance matrices o-2,~i. The form of the regression curve O is unknown because, in 
general, the object can follow any continuous path. Since only discrete approximations of the points on 
the trajectory are available, we cannot expect to reconstruct it exactly. The aim of the reconstruction is to 
find the trajectory along which the robot end-effector will move, therefore we require the trajectory to be 
smooth. If the measurements were simply interpolated, this requirement would not be fulfilled. On the 
other hand, the trajectory must not be too distant from the measurements. Hence we must seek for the 
compromise between smoothness and goodness-of-fit. This motivates us to search for the curve that best 
fits our data in the class 

#(J) is absolutely continuous, j = 0 . . . .  , m - 1, 

W~'[a,  b] = p : [ a ,  b] ~ R M ;  lz~ m) are square integrable, k =  1 , . . . , M ,  

where a = t~ and b = t N. The  natural measure of smoothness associated with every component  of the 
function # ~ W~'[a, b] is ff/z~")(t) 2 dt  while the standard measure of goodness-of-fit for the regression 

2 2 model (24) is 1/NE~=I  II zj - # ( t  i) 11(,, ~)-1. One possibility for combining these two criterion functions to 
obtain an overall performance measure is to estimate the function tt by the function tta which minimizes 
[6]: 

1 N M 

E IlzJ 2 fb - 1 + E '(k dt  (25)  
N j = I  kff i l  a 

over/~ ~ W~[a,  b]. The  parameter  ~ governs the tradeoff between smoothness and goodness-of-fit. It 
can be easily seen that the scale parameter  tr z can be left out since minimizing (25) is equivalent to 
m l n l m l z l n g  

1 N M 
N E f b~ ) ( t )  z - -  ~-1 + Y'~ A k dt ,  (26)  

j = l  kff i l  a 

where the relation between the new and the old smoothing parameter  is given by A = tr2~. In the special 
case m -- 2, minimization of (26) gives rise to the trajectory fitting data well and having the smallest 
possible overall second derivative. This property of the fitted trajectory is a very favourable one since the 
acceleration capabilities of the mechanism are limited. 

We denote by ¢4" , . .~2m( t l  . . . .  , t N) the vector space of natural splines [6] with knots at the {ti}, i.e. the set 
of functions s( t )  = ~,m~-olOiti q- EiNffi l~i(t  -- )i'+t )2m--l, where 

0, x < O  
(x)+= x, x>__0' 

satisfying 
(i) s is a piecewise polynomial of degree 2m - 1 on any subinterval [ti, t~+l), 

(ii) s has 2m - 2 continuous derivatives, 
(iii) s has a (2m - 1)st derivative that is a step function with jumps at t~ . . . .  , t N, and 
(iv) s is a polynomial of degree m - 1 outside of [a, b]. 
The following theorem can be established to solve the problem (26): 

Theorem 1. Let  x 1 . . . . .  x N be a basis for ¢ ¢ / ' , ~ 2 m ( t  I . . . . .  tN), 
m - 1  N 

x j ( t )  = ~_~ Oijti + ~.~ 8 i j ( t - -  ti)2+ m-1 
i = 0  i = 1  

and suppose that N > 2m. For foced O < A k < oo, k = 1 . . . . .  M,  there is a unique minimizer, #a, o f  (26) in 
W~n[a, b]. Moreover, pa ~.,VS"2m(tl  . . . . .  t N) and therefore has the form E~= lflaixj(t).  The coefficients 
[$a = [ f iT  . . . .  , [JT~N]T ~ R MN are the solution to 

( X + ~fG)lJa = z ,  (27) 
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where 

XI(/1)/M x 2 ( t l ) I m  . . .  X N ( t l ) I  M 

X =  . . . . . .  

[Xl(tN)IM x2(tU)Im ... Xu(tu)I  M 

VN[ SH A 612A ... 

G = ( - 1 ) m ( z m - 1 ) "  [ 6 N I A  6"N2A i i i  

~ I N A  ], 

t ~ N N A  

diag(,Yi) and A diag(Ak). X, G, 2~ ~ R MN×MN, A, I M ~ R M×M and z = [z T, _TIT ~ nMN ~. . . . , L n j t:= l',t . 

The proof is based on the straightforward generalization of the proof given in [6] for the case when ~ is 
scalar instead of vector function and is omitted. A similar theorem showing that natural vector splines 
are the solution to the minimization problem (26) has been given in [8]. Note that the matrix of the 
system (27) depends on the selected basis functions of the space of natural splines. By choosing the basis 
based on B-splines [14,5], the matrix of the system (27) becomes banded what significantly reduces the 
computational cost of the algorithm and also results in a numerically stable algorithm. There exists an 
alternative way to write Eqs. (27). Similarly as 1-D case [6], premultiplying (27) by xT,~-1 yields 

( xT,a~ -1X + ~"~) ]3 A = xT.~ - 1Z, (28) 

where 

g2 = { ( N fabx'm)( t)x'm)( t) dt)A)Nj=, ~RMNxMN. 

The matrix of system (28) is positive definite. 
The case when some of the measurements z i are given exactly can be included by setting the 

corresponding covariances ~Yi to ~I M with ~ = 0 when Eq. (27) is used, or by taking ~ 'small enough' 
when Eq. (28) is used. Such ~ can always be found because 

where #x,e denotes the solution to the smoothing problem (26) given ~ and /t. 
It remains to show how to choose the smoothing parameter /t. If it is to small or too large, the 

resulting trajectory is undersmoothed or oversmoothed, respectively. Ideally, one would like to choose 
the smoothing parameter to minimize the average squared error: 

1 N 
ASE(A) = ~ j= l I1 m(tj)-o(tj)ll  = (29) 

However, this minimization is in practice impossible because the true function O is unknown. In the 
scalar case, several methods for choosing a have been suggested. The cross-validation and the general- 
ized cross-validation scores [20,6] are the most widely used. The vector counterpart of the cross-validation 
score is given by 

l N 
-~- --~1 - m(;'(tAIJ 7" (30) cv( ) IIz  2 

where/~x(y) denotes the solution to the smoothing problem (26) with the j-th data point, (ti, zj), omitted. 
By minimizing (30) we obtain a curve which is least sensitive to the omission of one of the measurements. 
It can be shown that (30) can be converted into the following, computationally more appealing form [8]: 

1 N 2 

= E -H(#)(~t))  (zi-l~x(t,)) ~j-l, (31) cv(a)  1, j==1 (G - '  
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where H<#)(A) is the j-th M x M block diagonal submatrix of the hat matrix 

H(A) = X (  X T ~ - a X  + 12) - I  x T E - I .  (32) 

For various technical reasons, it is often desirable to replace the CV-score by the generalized cross-vali- 
dation score. In [8], the following score has been suggested as the vector version of the generalized 
cross-validation: 

1 - ,  (33) GCV(A) = ~ 1 2" 

 trace( r - H ( a ) )  

Both scores depend on the central bands of the hat matrix H(a).  A method for their calculation, which 
is directly applicable to the vector case, is sketched in the discussion of Silverman's paper [19]. Some 
results on the performance of both scores in the vector case are given, though in a slightly different 
setting, in [8]. 

There exists a theoretically better model for the calculation of the trajectory than Model 1, 2 and 3. 
Let A~, A r, V~j, V w Ul~, u o, t and ~ have the same meaning as in (7), let k and q have the same 
meaning as in (22), let 

and let 

g , j ( q ) = A i ( R ( k r ( q ) ) m j + k p ( q ) ) ,  g o ( q ) = A r ( R ( k r ( q ) ) m j + k e ( q ) )  

for some appropriate mappings gly, go" We can now set the following nonlinear regression Model 4: 

Ulj=glj(O(tj))+~lj, Urj=grj(O(tj))+~rj, J = l  . . . .  ,N,  

where ~j., ~'o are zero mean, mutually independent random vectors with the covariance matrices o'2V~ 
and ~rZVrj, respectively, and 0 is the true trajectory in the joint space. To estimate this trajectory, the 
following nonlinear criterion must be minimized 

1 EN Ulj--glJ(l~(tJ)) 27 ̀ 1 ~ M fabl~(m)(t)2 __ u~y_gry(iz(ty))  2 + E A  i dt (34) 
Nj=~ 

over all trajectories/t ~ WT'[a, b]. Any funct ion/~ achieving minimum of (34) is a natural vector spline. 
However, unlike the linear case, there may be multiple minima. An iterative algorithm based on the 
Levenberg-Marquardt method was given [7]. Although the joint trajectory obtained with the help of this 
model is a theoretically better approximation of the true joint trajectoy than the one obtained with the 
help of Model 3, we do not recommend its use because it is computationally much more expensive. 

5. Simulation results 

A simulation experiment was carried out to test the performance of the natural vector splines for the 
estimation of the trajectory of a moving object. The simulated cameras were modelled as 512 x 512 pixel 
resolution imaging surfaces with the focal length f = 28 units. The stereo setup had a baseline length 
b = 500 units and both cameras were aligned. The object was modelled as a wire-framed cube with side 
length 100 units and with its eight vertices being used as the object feature points. The trajectory of the 
cube was generated by a computer with the course 2000-3000 units away from the cameras. The whole 
stereo image sequence had 101 frames. The cube's vertices were projected into both image planes at 
every time instant. Then independent, normally distributed noise was added to the true image coordi- 
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Fig. 2. Translation vector: x-component. Fig. 3. Translation vector: y-component. 

nates to simulate the noisy measurements and the images were digitized. The cube's poses were 
computed by minimizing either (3) or (7) and their uncertainties were computed as described in Section 
3. The sequence of minimizations of (3) resulted in the same situation as in Model 1 whereas the 
outcome of the sequence of minimizations of (7) was the situation described by Model 2. Given a 
particular choice of the smoothing parameter A, an approximation to the true trajectory was calculated 
by either minimizing (26) twice for the translation and the rotation vector with M = 3 when Model I was 
used or by minimizing (26) once for the pose with M = 6 when Model 2 was used. The smoothing 
parameter was determined by minimizing either the ASE, CV or GCV score. 

The accuracy of the spline smoothing performed according to Model 1 is illustrated in Figs. 2 to 7, 
where the solid curves represent the output produced by the smoothing procedure while the dots 
represent the estimated coefficients of the cube's poses. The cross-validation score was used in this case. 
The noise was effectively smoothed out. The figures show us that the relative error in the estimated 
translation vector is smaller than its counterpart in the estimated rotation vector, i.e. the estimation of 
the orientation is more sensitive than the estimation of the position. One could have expected this; the 
estimate of the translation vector was obtained by direct use of the reconstructed object feature points Pi 
while the rotation vector was obtained by use of v i given in (4). The length of Pi is of the same order as 
the distance of the object to the camera system while the length of v i is of the same order as the size of 
the object. Since the distance of the object to the camera system is normally larger than its size, the 
relative errors in the coordinates of v,. are larger than their counterparts in the coordinates of Pi. The 
error model for the uncertainties in the orientation parameters was developed under the assumption that 
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the true and the estimated rotation matrix can be related by the differential rotation matrix. Therefore it 
must be used with care; Formula (16) becomes unvalid once the error in the estimated rotation vector 
crosses a certain limit. 

To demonstrate the accuracy of the cross-validation and the generalized cross-validation, we did a 
Monte Carlo simulation with 200 runs, each with a different measurement noise realization. For each 
run we approximated the trajectory by minimizing ASE, CV and GCV scores with either the calculated 
covariance matrices or with the covariance matrices set to the ideritity matrix. The summary statistics of 
the experiment is gathered in Tables 1 and 2. '~ASE, '~CV and AGc v denote the estimated optimal 
smoothing parameter obtained by minimizing ASE, CV and GCV scores, respectively. By comparing the 
results given in both tables, one can clearly see that the computation of the covariance matrices improves 
the accuracy of the approximating trajectory. As expected, the trajectory obtained by use of Model 2 is 
slightly more accurate than the one obtained by use of Model 1, but the difference is not too dramatical. 
We expect that the difference between both estimates would increase if the distance between the object 
and the camera increased. On the other hand, the computation of the trajectory by use of Model 1 is 
more efficient because the dimensionality of the problem is smaller than the dimensionality of the 
problem when Model 2 is used. In Table 1 we can see that the GCV estimate slightly outperformed the 
CV estimate when the translation or the pose trajectory were approximated while they gave essentially 

Table 1 
Summary statistics for 200 replications of the experiment (with computed covariance matrices). 

ASE(;tASE ) ASE(~c.v) ASE(;t cv) ASE(AGCV) ASE(Ac, cv)~ 

ASE(;t ASE) ASE(~ASE) 

Model 1 (Trans.) 
Expectation 1.299035 

Model 1 (Trans.) 
SD 0.714876 

Model 1 (Orient.) 
Expectation 0.000596 

Model 1 (Orient.) 
SD 0.000229 

Model 2 (Pose) 
Expectation 1.328998 

Model 2 (Pose) 
SD 0.743312 

2.390818 2.081714 2.033360 1.731614 

1.115787 1.019384 0.931543 0.757778 

0.000785 1.343166 0.000790 1.360374 

0.000311 0.343194 0.000307 0.385751 

2.357847 1.961145 1.927753 1.558913 

1.121874 0.904297 0.920151 0.597591 
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Table 2 
Summary statistics for 200 replications of the experiment (with covariance matrices set to identity). 

ASE(AASE) ASE(A cv) ASE(Acv)  ASE(AGcv) ASE(AGCV) 

ASE(AAsE) ASE(AASE ) 

Model 1 (Trans.) 
Expectation 2.426939 2.942644 1.228655 24.096578 11.322139 

Model 1 (Trans.) 
SD 0.917074 1.269231 0.321666 4.258267 4.544574 

Model 1 (Orient.) 
Expectation 0.000867 0.001180 1.406090 0.001185 1.436916 

Model 1 (Orient.) 
SD 0.000308 0.000463 0.527131 0.000580 0.860098 

Model 2 (Pose) 
Expectation 2.284835 2.857492 1.274271 24.411552 12.344560 

Model 2 (Pose) 
SD 0.907756 1.752328 0.556727 3.411459 4.703860 

the same results when the orientation trajectory was approximated. Surprisingly, the proposed GCV 
estimate completely failed when the translation or the pose trajectory were estimated with covariance 
matrices set to identity (see Table 2). This result raises some doubt in the correctness of the vector 
generalization of the GCV score given in [8]. In the scalar case, the GCV score is obtained from the CV 

1/NEkflH~kk)(A). The resulting score is: score (31) by replacing the weights H~kk)(A) by their average N 

E x-  (zj- ..(tj 
j = 1 k = 1 / Z f ' "  (35) 

Clearly, the scores (33) and (35) coincide in the scalar case; but in the vector case, they are different. At 
the moment we are using the implementation of vector sptine smoothing obtained from the GCV 
directory of NETLIB [8] where the score (33) is used as the GCV score. We are working on our own 
implementation of the algorithm which will include the minimization of the suggested score (35) as well. 

6. Concluding remarks 

In this paper we described how a robot's visual system can be used for the reconstruction of 
trajectories for teaching robot paths. Using the robot's visual system, the human operator can transfer his 
knowledge about the course of the desired motion to the robot. We demonstrated how uncertainties in 
the feature point positions can be converted to the uncertainties in the estimated object poses. We 
extended the theory of smoothing splines to include the case when vector measurements and their 
uncertainties are available. We showed how a continuous approximation of the true trajectory can be 
calculated. We gave some simulation results to demonstrate the accuracy of the approach. 

Further investigations should be done in order to improve the usefulness of our method. We 
concentrated in this article on the additive noise model. However, especially when a binocular vision 
system is used, another type of error frequently occurs: outliers. The second term in Eq. (26) makes the 
method fairly resistant to this type of noise although robustness cannot be guaranteed. However, for 
large values of sample size, it is unlikely that the outliers would cause any problems [17]. Another 
problem is that because of the physical constraints in the robot joints, the robot cannot track every path. 
To assure the feasibility of the reconstructed trajectory, the limits in joint velocities and accelerations 
must be considered. This means in the language of smoothing splines that the suggested method needs to 
be extended to include the case when inequality constraints are imposed on the derivatives of the 
trajectory. At the moment we are working on the implementation of the algorithm which will contain this 
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extension. We shall present our results in the future. We are also developing other modules of the system 
described in the introduction which will enable us to carry out some experiments with real data. 
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