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SUMMARY
General-purpose autonomous robots must have the ability
to combine the available sensorimotor knowledge in order
to solve more complex tasks. Such knowledge is often
given in the form of movement primitives. In this paper,
we investigate the problem of sequencing of movement
primitives. We selected nonlinear dynamic systems as
the underlying sensorimotor representation because they
provide a powerful machinery for the specification of
primitive movements. We propose two new methodologies
which both ensure that consecutive movement primitives
are joined together in a continuous way (up to second-order
derivatives). The first is based on proper initialization of the
third-order dynamic motion primitives and the second uses
online Gaussian kernel functions modification of the second-
order dynamic motion primitives. Both methodologies
were validated by simulation and by experimentally using
a Mitsubishi PA-10 articulated robot arm. Experiments
comprehend pouring, table wiping, and carrying a glass of
liquid.

KEYWORDS: Trajectory generation; Dynamic movement
primitives; Imitation learning.

1. Introduction
Complex tasks are often easier to solve if the overall problem
is segmented into parts that are related to subgoals of the task.
Such a methodology was used, for example, in the work of
Bentivegna et al.1 to implement complex behaviors based
on learning from demonstration and practicing2. Once the
task has been divided successfully into simpler subproblems
that a robot can solve efficiently, it is necessary to join the
resulting control policies into a continuous motor plan. In
robotics as well as in biological systems, motor primitives
can be viewed as the building blocks used to construct
the entire motor repertoire through different combination
operators3, 4. An increasingly popular representation of motor
primitives is based on nonlinear dynamic systems proposed
by Ijspeert et al5, 6. The control policies encoded by nonlinear
dynamic systems are often referred to as dynamic movement
primitives (DMPs). The power of the DMP representation
is due to their ability to adapt the learned movements and
due to their robustness against perturbations. They were
used in many robotics applications comprising learning from
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demonstration7–9, skill learning10, 11, movement reproduction
with obstacle avoidance12, 13, etc. The effective sequencing
of motor primitives can be realized if the robot can smoothly
transition from one movement primitive to another. The basic
DMP formulation provides enough degrees of freedom only
to ensure continuity in positions and velocities. However,
when DMPs are used in conjunction with an inverse model
controller, it is important that we provide also a continuous
desired acceleration signal8. This paper contributes to the
problem of joining movement primitives by 1) applying
3rd order DMPs with proper initialization of the system
variables and 2) with kernel function weights adaptation
applied to the 2nd order DMPs. We propose a formulation
of dynamic systems that provides enough degrees of
freedom to ensure smoothness in position, velocity, and
acceleration, which results in smoother transitions between
two consecutive motor plans. We address also the problem
of combining discrete and rhythmic tasks. In the next
section, we briefly describe the standard second-order DMP
formulation and introduce the notation, which is used in
the rest of the paper. The problem of joining two DMPs
is discussed in Section 3, where a solution using third-
order DMPs is proposed. The appropriate learning method
is presented in Section 4. Next, we propose a method to
smoothly join two trajectories based on standard second-
order DMP formulation, which uses the technique of
kernel function weights adaptation. Experimental results
for joining two discrete motions and a discrete and a
rhythmic motion are given in Section 6. Finally, we conclude
the paper by discussing the properties of our approach in
Section 7.

2. Second-Order DMP Formulation
In the DMP framework, any movement can be represented
as a time evolution of a nonlinear dynamical system. Such
a representation has an advantage that a perturbation can be
automatically corrected for by the dynamics of the system,
thus enhancing the robustness of the system. In the case
of discrete movements, the nonlinear dynamical system can
be adapted to new goal configurations by simply changing
the goal parameter. Similarly, the DMP can adapt to a new
trajectory duration by changing a single parameter. In the
standard DMP formulation, motion in each motor, joint,
or task coordinate is represented as a damped mass–spring
system perturbed by an external force. Such a system can be
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modeled with a set of differential equations12, 14

v̇ = 1
τ

(K(g − y) − Dv + f (x)) ,

(1)
ẏ = v

τ
,

where v/τ and y are the velocity and position of the system,
x is the phase variable, which defines the time evolution of
the trajectory, τ is the temporal scaling factor, K is the spring
constant, and D is the damping. For trajectory generation, it is
necessary that the dynamic system be critically damped and
thus reach the goal position without overshoots. A suitable
choice is D = 2

√
K , where K is chosen to meet the desired

velocity response of the system. Function f (x) is a nonlinear
function which is used to adapt the response of the dynamic
system to an arbitrary complex movement. A suitable choice
for f (x) was proposed by Ijspeert et al.6 in the form of a
linear combination of M radial basis functions

f (x) =
∑M

j=1 wjψj (x)
∑M

j=1 ψj (x)
x, (2)

where ψj are Gaussian functions defined as

ψj (x) = exp
(

− 1
2σ 2

j

(x − cj )2
)

. (3)

Parameters cj and σj define the center and the width of the j th
basis function, while wj are the adjustable weights used to
obtain the desired shape of the trajectory. The phase variable
x is defined by

ẋ = −αx

τ
, (4)

where α is an appropriately chosen decay factor. The initial
value of the phase variable is 1 and is reset at the beginning
of each DMP. In typical robotic application, each DMP
corresponds to one controlled variable, which might be, for
example, one of the joint coordinates or one of the Cartesian
coordinates and all DMPs share the same phase variable.

3. Third-Order DMP Formulation
In the original DMP formulation6, the system (1)–(4) has an
initial state (x, y, v) = (1, y0, 0) and a unique attractor point
(x, y, v) = (0, g, 0), which means that the previous motion
has to completely stop before the next motion is generated.
Pastor et al.9 noted that by appropriately defining the
initial conditions for the second movement, two consecutive
movements can be joined together with continuous velocities.
In order to obtain the position and velocity continuity,
the condition vpred(xe)/τpred = vsucc(1)/τsucc and ypred(xe) =
ysucc(1) has to be fulfilled. Suffix pred and succ denote
predecessor and successive motion primitives, respectively,
and xe denotes the phase variable of the predecessor motion
primitive at the join instance. The acceleration, however,
remains discontinuous even after this modification. In ref.
[15], we proposed a solution to this problem by replacing the

second-order system (1) with a third-order one, where we
added a first-order filter to the DMP output. The third-order
DMP was proposed by Schaal et al.,8 where they introduced
a simple first-order filter for the goal state in order to ensure
continuous accelerations at the goal change. For our purpose,
it is worth knowing that any third-order system also allows
to control the initial accelerations with proper initialization
of the system variables. The third-order canonical system is

v̇ = 1
τ

(K(r − y) − Dv + f (x)),

ẏ = v

τ
, (5)

ṙ = H

τ
(g − r).

Schaal et al.8 proposed triple pole of the third-order system,
which ensures critical damping of the system. In such a
case, gains K , D, and H are related through D = 2

√
K

and H =
√

K . When joining two arbitrary trajectories, one
has to assure continuous accelerations and velocities. Initial
conditions that ensure continuity of movement up to second-
order derivatives can be calculated as follows:

ysucc(1) = ypred(xe),

vsucc(1) = ẏpred(xe)τsucc, (6)

rsucc(1) = τ 2
succÿpred(xe) + Dτsuccẏpred(xe) − f (1))

K

+ ypred(xe).

The phase variable x remains defined by Eq. (4). The proof
is as follows. If we omit the nonlinear term f from Eq. (5),
equation system (5) becomes a system of nonhomogeneous
linear differential equations with constant coefficients. It
is well known that the general solution of such a system
can be written as a sum of the particular and homogeneous
solution, [z, y]T = [zp, yp]T + [zh, yh]T . It is easy to check
that a constant function [0, g, g] solves the equation system
(5) with the nonlinear term f omitted. Hence, the general
solution of this system is given by




v
y
r



 =




0
g
g



 + exp (tA) c, A =





−D

τ
−K

τ

K

τ
1
τ

0 0

0 0 −H

τ




, (7)

where c ∈ R3 is an arbitrary constant, which can be
determined from the initial conditions. The system is
guaranteed to converge to the unique attractor point [0, g, g]
if the eigenvalues of A are negative. The eigenvalues of A
are given as solutions of the equation

det(A−λI)=−
(
λ2 + λD/τ + K/τ 2) (H/τ + λ)=0, (8)

and hence A has negative eigenvalues λ1,2 = −
√

K/τ and
λ3 = −H/τ if D = 2

√
K , H, K, τ > 0. Since the phase x
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and consequently the nonlinear term f (x) as defined in (2)
tend to zero, the nonlinear system (5) is also guaranteed to
converge to the attractor point [0, g, g]. The actual value for
the third pole λ3 is selected upon the desired behavior of the
system subjected to the goal change. Values of λ3 closer to 0
increase the smoothing of the trajectory subjected to the goal
change during the DMP execution.

An important advantage of DMPs is the ability to change
the goal. The standard DMP is defined as a second-order
system with three variable inputs: goal g, time constant τ ,
and the nonlinear function f (x). Whenever a new goal is
specified during the DMP evolution, the resulting trajectory
is governed according to the response of the second-order
system to a step function. An example of such motion is the
catching of a free flying object, where the catching position is
predicted based on the object position estimates provided by
a stereo image system16, which is changing during the DMP
evolution. Thus, the resulting acceleration when applying the
second-order DMP is not differentiable, which is not ideal
for motor control. On the other hand, the third-order DMP
formulation assures smooth differentiable accelerations.

The presented formulation is valid for discrete movements,
i.e., movements with output q evolving toward the goal
g. Many of the motion patterns in nature are rhythmic,
with the motion pattern reproduced cyclically17. Rhythmic
motions can be described with the same set of equations
as discrete motions, which is given in Eq. (1), but with
a modified definition of the nonlinear function f (x). The
phase variable x, which is the output of the canonical system
described by Eq. (4) for discrete motions, is replaced with
the phase variable φ, which is a monotonically increasing
ramp function. The function f (φ) then becomes

f (φ) =
∑M

j=1 wjψj (φ)
∑M

j=1 ψj (φ)
, (9)

where ψj are Gaussian-like periodic functions defined by

ψj (φ) = exp
(

1
2σ 2

j

(cos(φ − cj ) − 1
)

, (10)

and the phase variable φ is

τ φ̇ = 1. (11)

Parameters cj and σj , respectively, define the center and
width of the j th periodic basis function, while wj are
adjustable weights used to obtain the desired shape of the
trajectory. The extension to third-order DMPs is trivial.
We simply need to replace f (x) with f (φ) in the set of
equations (5).

We tested the sequencing of two discrete movements
encoded by DMPs in simulation. In this example, we join two
line segments. For the sake of simplicity, the most trivial case
of DMP—the line—is used in order to demonstrate solely the
effect of discontinuous accelerations when joining DMPs.
Joining of more complex trajectories is shown in Section 6.
Figure 1 shows the response of two consecutive second-
and third-order DMPs and the corresponding velocities
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Fig. 1. (Colour online) Sequencing of dynamic movement
primitives: the output of the second- and third-order DMP. Panel
1 shows output of each motion primitive, panel 2 shows joined
position, panel 3 shows resulting velocity of joined motion
primitives, and panel 4 shows resulting accelerations of the joined
motion primitives. Labels DMP2 and DMP3 denote second- and
third-order DMPs, respectively.

and accelerations. In order to assure smooth transition
between two movement primitives, we calculated the initial
state of the succeeding movement primitive by utilizing
the final state of the preceding movement primitives by
exploiting the set of equations (6). As we can see, the third-
order DMP formulation ensures continuous accelerations,
whereas the accelerations in the original formulation are
discontinuous. The parameter values for DMP used in this
and the following cases are summarized in Table I. In our
experiments, we minimized the number of kernel functions
M . We have chosen the number of kernel functions M which
still enables the reproduction of the demonstrated trajectory
within the desired precision, and optimized the kernel width
σ accordingly. More details on optimizing the kernel function
number and kernel widths can be found in refs. [17, 18].

4. Motion Acquisition
A trajectory represented by the third-order dynamic system
is parameterized with the initial acceleration, velocity,
and position, the final goal position, and a set of
weights wj associated with radial basis functions. In this
section, we present the procedure for the calculation of
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Table I. DMP parameters used for the simulation and real robot
experiments.

Parameter name Discrete Motion Rhythmic Motion

K 200 200
D 28 28
H 14 14
α 2 2
No. of kernels M 10 20
Kernel width σ 0.5 0.32
Integration step dt 0.01 s 0.01 s

weights wj . We assume that from human demonstration
or kinesthetic guiding we obtain trajectory data points
{yd (ti), ẏd (ti), ÿd (ti), ti ∈ [0, T ]. We define the function f ∗

as follows:

f ∗(t) = τ 2ÿ + τDẏ + K(y − g). (12)

This function is obtained by replacing the system of two first-
order equations (5) with one equation of the second order,
where the nonlinear term f (x) has been omitted. Our task is
to find a set of weights {wj } that minimize the quadratic cost
function

J =
N∑

i=0

(f ∗(ti) − f (x(ti)))2. (13)

We use global regression methods to find the optimal weights
wj . One possibility is to apply locally weighted regression6, 9,
which minimizes M separate cost functions

Jj =
N∑

i=0

ψj (x(ti))(f ∗(ti) − wjx(ti))2, (14)

j = 1, . . . , M . Locally weighted regression19 was proposed
as a method that prevents negative interference between
task models. Local models are used to generalize in the
neighborhood of the given data point and are favorable
in conjunction with learning and classification and can
help avoid problems with overfitting. The other possibility,
which was used in our experiments, is to directly optimize
(13), which takes into account the interplay between the
neighboring basis functions and can therefore approximate
the observed movement with fewer kernel functions and with
greater accuracy. Global regression results in the following
linear system of equations:

Aw = f∗, (15)

w =




w1
...

wM



 , f∗ =




f ∗(t0)

...
f ∗(tN )



 ,

A =





ψ1(x(t0))x(t0)∑M
j=1 ψj (x(t0))

· · · ψM (x(t0))x(t0)∑M
j=1 ψj (x(t0))

...
...

...
ψ1(x(tN ))x(tN )∑M

j=1 ψj (x(tN ))
· · · ψM (x(tN ))x(tN )∑M

j=1 ψj (x(tN ))



 .

Similarly, as in the case of locally weighted regression, it
is possible to compute a solution to (15) recursively by
incrementally updating the following quantities:

Pi = Pi−1 − Pi−1aiaT
i Pi−1

1 + aT
i Pi−1ai

, (16)

wi = wi−1 + (f ∗(ti) − aT
i wi−1)Piai , (17)

where ai is the M-dimensional column vector associated
with the corresponding row of the matrix A and the optimal
weights are w = wN . When learning third-order DMPs, we
set r = g. With this setting for r and because there are no
changes in the goal configuration g, the third-order DMP
becomes equal to the second-order DMP and we can use the
same training method as for second-order DMPs. In contrast
to this approach, the third-order formulation presented in
ref. [15] also requires the jerk estimation.

5. Online Kernel Function Adaptation
To avoid increasing the order of the underlying system
of differential equations, we also explored a solution to
motion sequencing, which is based on online modification of
the Gaussian kernel functions gains. This second approach
enables us to keep using the original DMP formulation. The
goal of this modification is to assure continuous acceleration
when joining two motion primitives. We assume that we
join two trajectories at time t0. The phase variable x of the
succeeding DMP is 1 for t = t0 and the preceding DMP
ended with phase variable xe at the time t0 − dt , where dt
denotes the sampling time. Let’s rewrite (1) for x = 1, i.e.,

v̇(1) = 1
τ

(K(g − y(1)) − Dv(1) + f (1)) . (18)

Obviously, in order to assure continuity, v̇pred(xe)/
τpred = v̇succ(1)/τsucc, vpred(xe)/τpred = vsucc(1)/τsucc and
ypred(xe) = ysucc(1), which leads to the condition

fsucc(1) = τ 2
succ

τpred

v̇pred(xe) + τsucc

τpred

Dvpred(xe)

− K(gsucc − ypred(xe)). (19)

Suffix pred and succ denote predecessor and successive
motion primitives, respectively. From (2), it follows that

w1 = fsucc(1) −
∑M

j=2 wjψj (1)
∑M

j=1 ψj (1)
, (20)

since ψ1(1) = 1 by definition. In order to assure continuous
accelerations when joining two dynamic movement
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primitives, it is necessary to recalculate the weight of the
first Gaussian kernel function of the next motion primitive
according to Eq. (20).

Modification of just the first Gaussian kernel function
might not be appropriate when applying the wider Gaussian
kernel function (3). A general solution for such a case yields
to

%w = ψ̂



fsucc(1)
M∑

j=1

ψj (1) −
M∑

j=1

wjψj (1)



 , (21)

where ψ̂ denotes the Moore–Penrose pseudoinverse of the
vector ψ composed of components of the Gaussian kernel
functions ψj (1) and %w denotes the vector of modification
of the original weights w.

In the case when a discrete motion is followed by a
rhythmic motion, we apply a similar strategy of modifying
the weight of the appropriate kernel function. In contrast to
discrete motions, rhythmic motions can be started at arbitrary
phase φ. In such a case, the initial acceleration is determined
by wk , where k is the index where the function ψk(φ) is
maximal, k = {1..N}. The weight of the kth kernel function
can be calculated by

wk =
(

τ 2
succ

τpred

v̇pred(xe) + τsucc

τpred

Dvpred(xe) − K(gsucc

−ypred(xe)) −
∑M

j=1,j &=k wjψj (φ)
∑M

j=1 ψj (φ)

)
1

ψk(φ)
. (22)

In the above equation, we have two phase variables, x and φ,
one belonging to the preceding discrete motion and the other
to the succeeding rhythmic motion. Note that the modified
kernel function wk should be used only in the transition phase
when joining discrete and rhythmic motion. Afterward, the
original kernel function weight should be used in order to
preserve the shape of the learned rhythmic motion.

In order to demonstrate the efficiency of the proposed
modification, we repeated the simulation for the same case
as in Section 3. Here, we compared the response of the
ordinary second-order DMP and the second-order DMP
with the online weights modification according to Eq. (5).
From Fig. 2, we can see that the modified DMP results in
continuous accelerations when joining two arbitrarily chosen
DMPs.

6. Experimental Results
In this section, we experimentally evaluate DMP sequencing
algorithms on a real robot. As a representative example that
involves the joining of two discrete movements, we consider
the pouring task. Let’s briefly describe the task of pouring a
liquid into a glass. It depends on many factors including the
position of the glass with respect to the body, the shape of
the vessel containing the liquid, and the shape of the glass
to be filled. A general strategy for pouring is 1) approach
the glass to be filled with a suitable approach trajectory and
2) start the pouring motion toward the end of the approach
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Fig. 2. (Colour online) Sequencing of dynamic movement
primitives: the output of the ordinary second-order DMP (labeled
as DMP2) and DMP with online weights adaptation (labeled as
DMP2a).

trajectory. During the execution of the pouring motion, the
robot monitors the liquid flow until the glass is filled to
the desired level. These two phases define two separate
movement primitives. To successfully fill the glass placed
at different locations on the table, the actual pouring motion
does not need to be changed. Successful pouring can be
achieved solely by selecting the appropriate goal position
for the approach trajectory, which is automatically taken into
consideration by the underlying dynamic system, followed by
the previously learned and constant pouring movement. The
goal position of the approach trajectory can be determined
with an appropriate sensory system, e.g., vision. For this
approach to work, we need to be able to smoothly sequence
the available primitives. Figure 3 shows our experimental
setup. It consists of the seven degree-of-freedom articulated
robotic arm Mitsubishi PA-10 with the three-finger Barrett
hand. A 3-D vision subsystem was used to extract features of
the scene, i. e., the glass and the vessel position on the table.
The task of the robot was to grasp the vessel (bottle) and to fill
the glass. In order to accomplish the task, we used movement
primitives from our library of DMPs. Our DMP library
consists of various motion primitives relevant in typical
kitchen tasks: reaching, pouring, wiping, shaking, cutting,
power grasps, etc. Motion primitives were obtained from
human demonstration using an optical tracking system based
on passive markers (BTS Smart20). All motion primitives
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Fig. 3. (Colour online) Experimental setup for pouring.

were encoded as DMPs using the procedure described in
Section 4 and are independent regarding the usage of the
second- or the third-order DMPs. DMPs were designed to
encode discrete point-to-point movements which starts and
ends when the robot is at rest, i.e., with zero velocity and
acceleration. The procedures described in Sections 3 and 5
enable a transition between two DMPs without requiring that
the velocities and accelerations are zero. This is achieved
by initializing the initial DMP parameters y and v with
values different from what was observed during training.
One of the key issues of extracting motion primitives during
online observation is also the motion segmentation. Recently,
few approaches for automatic motion segmentation were
proposed, based on combined stochastic segmentation and
clustering21, using the observation in object space22, by
observing the velocities at zero crossing of the joint motion23,
etc. In our case, the observed motion was segmented
manually into appropriate motion primitives.

For the pouring task, the transition between the approach
and pouring primitive was accomplished without stopping
the motion at the end of each movement. In order to compare
methods, we applied ordinary second-order DMPs, DMPs
with online weights adaptation, and third-order DMPs. In
all cases, we parameterized dynamic movement primitives
with 10 kernel functions. The results are presented in Fig. 4.
For the sake of simplicity, only the tilt angle is shown. The
dotted line in Fig. 4 marks the time when we join both motion
primitives. We can see that both proposed methods, the third-
order DMP and DMP with online modification of weights
of the kernel functions result in continuous accelerations,
whereas the original second-order method does not. As
expected, the response of the second-order DMP differs from
the second-order DMP with weight modifications only at
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Fig. 4. (Colour online) Sequencing of dynamic movement
primitives: the output of the ordinary second-order DMP labeled
as DMP2, DMP with online weights adaptation labeled as DMP2a,
and third-order DMP labeled as DMP3.
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Fig. 5. (Colour online) Experimental setup for wiping.
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Fig. 6. (Colour online) Sequencing of discrete and rhythmic
motions: the output of the ordinary second-order DMP (DMP2),
DMP with online weights adaptation (DMP2a), and third-order
DMP (DMP3).

the beginning of motion primitive. Later, it converges to the
same trajectory as specified by the standard second-order
DMP.

Next, we experimentally evaluated the sequencing of
discrete and rhythmic motions. Here, we considered the task
of wiping the table, as shown in Fig. 5. The initial motion was
a discrete movement, which brings the robot to the starting
position for wiping. This approach motion was followed by
the wiping motion, which has a rhythmic pattern.

The transition between the approach and the wiping
motion primitive is accomplished in such a way that we
assure continuous velocities and accelerations. As before,
we compared the response of the ordinary second-order
DMPs, DMPs with online weight adaptation, and third-order
DMP. The discrete and rhythmic motion were parameterized
with 10 and 20 kernel functions, respectively. The results
are presented in Fig 6. For the sake of simplicity, only the
x coordinate is shown. As in the previous example, we
can see that the proposed approaches with the third-order
DMP and the second-order DMP with online adaptation
of kernel gains assure smooth transition when joining two
trajectories, whereas the original DMP formulation results in
discontinuous accelerations.

The third example illustrates the importance of continuous
acceleration while executing typical tasks of kitchen
scenario. The task of the robot was to move a glass of
liquid from the table to a different location. The task was
composed of two motion primitives as shown in Fig. 7.
Again, we parameterized dynamic movement primitives
with 10 kernel functions. Joining ordinary second-order
DMPs results in motion with discontinuous accelerations
and consequently, the robot spills the liquid as shown in
Fig. 8. On the other hand, by using DMPs with online
weights adaptation or third-order DMPs with a proper
initialization, the robot successfully accomplished the task
without spilling the liquid. The reference position, velocity,
and acceleration trajectory for the y coordinate of the joined
motion is shown in Fig. 9. The effect of discontinuous
acceleration becomes even more evident with faster
movements.
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Fig. 7. (Colour online) The task describes pick and place sequence for a glass filled with liquid. Red solid line shows the robot trajectory
and the dashed blue line indicates the split point of two DMPs used to accomplish this task.

7. Conclusions
We studied the problem of joining dynamic movement
primitives, where we allow for nonzero velocity at the
moment of joining two consecutive primitives. With
standard, second-order DMPs, it is only possible to specify
the initial position and velocity for the following DMP, even
with modification proposed in Pastor et al.9. In general, it is
therefore not possible to join two consecutive primitives with
continuous acceleration. In order to ensure continuity up to
the second-order derivatives, we proposed two approaches.
The first is based on the formulation of dynamic movement
primitives based on nonlinear third-order dynamical system,
where the additional degree of freedom acts as a first-order
filter for the desired goal. This approach uses the same third-
order dynamical system as proposed by Schaal et al.8. We

propose proper initialization of the system variables in order
to control the initial accelerations. A benefit of the third-
order DMPs is that we obtain smooth accelerations also
in the case when we change the goal position during the
execution of the trajectory, which can happen very often
when the goal position is provided from a sensory system,
e. g., a camera. The second approach is based on online
modification of Gaussian kernel functions using the standard
second-order DMP formulation. The initial acceleration is
influenced mainly by the weight of the first few Gaussian
kernel functions. Therefore, we proposed to change them
online according to the required initial acceleration when
joining two dynamic movement primitives. Generally, both
methods perform similarly when joining two consecutive
motion primitives with continuous acceleration, although

Fig. 8. (Colour online) The upper sequence shows that discontinuous accelerations in the case of joining DMPs with ordinary second-order
DMPs result in spilling the liquid from the glass. On the other hand, joining trajectory with third-order DMPs and with second-order DMPs
and online kernel adaptation does not cause the liquid spilling, as shown in the lower sequence. There were no visible differences between
the method using third-order DMPs and the method using second-order DMPs with the online kernel function adaptation.



Action sequencing using dynamic movement primitives 845

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

0.6
joined DMP y coordinate

rd

DMP2
DMP2a
DMP3

0 1 2 3 4 5 6
−0.3

−0.2

−0.1

0

0.1
joined DMP y velocity

rd
/s

DMP2
DMP2a
DMP3

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2
joined DMP y acceleration

rd
/s

2

TIME (s)

DMP2
DMP2a
DMP3

Fig. 9. (Colour online) Sequencing of two discrete motions in the
task of carrying the glass: the output of the ordinary second-order
DMP (DMP2), second-order DMP with online weights adaptation
(DMP2a), and third-order DMP (DMP3).

the second approach can generate smoother acceleration,
as shown in Fig. 6. The benefit of the second approach is
in its simplicity. Both methods were tested in simulation
using a simple illustrative example, where we joined two
ramp functions, as well as in real-world experiments that
included pouring a liquid into a glass, table wiping, and
carrying a glass. The third experiment shows that continuous
accelerations are essential when performing typical kitchen
scenario tasks such as carrying a glass of liquid, even at
relatively low velocities. It has been shown that both proposed
approaches are appropriate when joining any combination of
discrete and rhythmic motions for the cases where smooth
accelerations are important. On the other hand, for some
applications, it might even be good to have jumps in the
acceleration to react more rapidly. Both methods allow
specifying the initial acceleration of the subsequent DMP,
therefore the proposed technique could be used also to
increase the accelerations in order to handle the cases where
fast reactions are more important than smooth trajectories.
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