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A Simple Ontology of Manipulation Actions
Based on Hand-Object Relations

Florentin Wörgötter, Eren Erdal Aksoy, Norbert Krüger, Justus Piater, Ales Ude, and Minija Tamosiunaite

Abstract—Humans can perform a multitude of different actions
with their hands (manipulations). In spite of this, so far there have
been only a few attempts to represent manipulation types trying
to understand the underlying principles. Here we first discuss how
manipulation actions are structured in space and time. For this we
use as temporal anchor points thosemoments where two objects (or
hand and object) touch or un-touch each other during a manipula-
tion.We show that by this one can define a relatively small tree-like
manipulation ontology. We find less than 30 fundamental manip-
ulations. The temporal anchors also provide us with information
about when to pay attention to additional important information,
for example when to consider trajectory shapes and relative poses
between objects. As a consequence a highly condensed representa-
tion emerges by which different manipulations can be recognized
and encoded. Examples of manipulations recognition and execu-
tion by a robot based on this representation are given at the end of
this study.

Index Terms—Manipulation action, manipulation ontology,
scene graph, semantic event chain.

I. INTRODUCTION

O BJECT manipulation is certainly one of the major germs
of human cognition. Human hands can be used in a

highly targeted way to alter the relations between several ob-
jects (e.g., putting two objects together by pick&place actions)
or to modify the structure of an object, here many times even
without a grasp (e.g., boring a hole into a soft surface).
In this context the question arises, which types of manip-

ulations exist? And usually this has been phrased by asking:
What can you do with “all the things in the world” (or with
those recognized in a complex visual scenery)? An experienced
human could indeed perform a mental simulation of the scenery
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and come up with many possible action plans. However, from
a bottom-up, purely data-driven perspective, there is no answer
to this question as things in a complex scene contain too many
feature-combinations and there are far too many interpretations
possible about the meaning of the different things in various
action contexts. Thus, for an inexperienced agent a bootstrap-
ping process is needed on which its experience (object-action
memory) can be grounded. This, however, is very difficult,
when considering “all things.”
Possibly, not the question: “What can you do with all things?”

but rather the simpler one: “What can you do with your hands?”
underlies the process which has bootstrapped cognition along
the phylogeny of our species and which is still bootstrapping
ever baby’s development into an experienced adult (for a very
detailed review see [1]). As compared to the almost infinite
number of possible feature combinations in the object domain,
there are far fewer possible basic hand-shapes existing. As a
consequence, ordering the space of manipulations starting from
“the hand” is easier than when starting from “all objects”. Thus,
while the importance of hands in development is not a novel
statement and rather widely accepted, it is quite amazing that
very little has been done to arrive at a systematic analysis about
“hand-actions.”
This study will analyze manipulations from an abstract point

of view and introduce a manipulation ontology tree based on
graph sequences, where each graph represents the touching re-
lations of the different manipulated objects. The manipulations
as presented by the ontology tree can also be used as a pow-
erful abstract data-representation of manipulations (called the
Semantic Event Chain) for robot applications (as shown in some
recent studies in [2] and [3]). Based on the first, theoretical part
we will then indeed show that one can define a metric where
manipulations of the same class (based on the introduced on-
tology) appear closer together thanmanipulations from different
classes. At the end of this paper we summarize some older ex-
periments to provide examples demonstrating how this repre-
sentation allows the recognition of human-performed manipu-
lations. Finally we also show some robotic experiments, where
a robot actually performs a simple manipulation based on the
above introduced graph-like representation. These two sets of
different experiments show that the apparently rather abstract
way, in which we define the manipulation tree, does indeed lead
to a useful representation.

A. State of the Art

As explained in more detail at the beginning of Section II,
we will, in the context of this paper, centrally focus on hand-
actions that involve objects (not gestures, etc.). We would ask
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our readers to keep this in mind, when we use the word action
in the following.
Reasoning about action has a long tradition in philosophy (see

[4] for a detailed account on action theories) and from this a
diverse picture has emerged, where we can cite Aune directly to
point out the major viewpoints [5, pg. 195].

“Perhaps the most controversial aspect of so called
action theory is its subject matter. This subject matter is
generally said to be (or to concern) actions, but different
philosophers conceive of actions in radically different
ways. For some philosophers actions are abstract enti-
ties—states of affairs, propositions, sets, or even ordered
pairs of some kind. For others, actions are distinctively
concrete entities located in space and time. Another group
of philosophers, among whom I include myself, have even
denied that actions are required for a reasonable action
theory, insisting that agents or actors will suffice as the
theory’s sole objects.”

Following the mid-1980s, the interest on philosophical as
well as cognitive aspects of action had a little bit died down
and only more recently again there exist more large-scale at-
tempts to formulate theories of action (e.g., [6]–[8]). A gen-
eral agreement seems to prevail in the field that intentional,
cognitive action (hence, not reflexes, etc.) requires “agency,”
much discussed already by Aune [4]. Intension based control
of actions has, as a consequence, been implemented at least for
the higher layers in a multitude of multilayer cognitive archi-
tectures for differently complex action-control (some examples
are: [9]–[12]). Links to the possible cognitive architecture in hu-
mans have also been drawn [7]. Hence, with respect to cognitive
actions, agency and intentionality have many times been (al-
most) equated. This manifests itself in the fact that a cognitive
agent has to possess a deliberate first-person perspective against
the objects in the world including other agents. Importantly, a
relational view emerges from this in a natural way setting agent
against objects and putting much emphasis on the interaction
between both [see, e.g., 13]).
Originally this interaction has been considered as ob-

ject-driven, where the structure and the shape of an object that
determines what you can do with it (affordance principle, [14],
[15]). Agency (or intentionality), on the other hand, suggest
that—possibly even more importantly—it is the intended, the
planned action, which lets you seek for suitable objects. Thus,
it seems that, for a cognitive agent, objects and actions are
inseparably intertwined [6], [16], which has been formalized by
the concept of “object-action complexes” (OACs,1 [17]–[19]).
Turchin states [6, p.23].

“Actions and, in particular, sensations are intimately tied
to the agent, the subject of knowledge. An object is a trans-
formation and prediction of actions.”

1Going beyond Gibson’s notion on Object-Affordances, the OAC concept
puts a much stronger emphasis on the planned action, which “defines“ an object.
For example, a hollow cylinder with a solid bottom becomes a “beaker” when
drinking from it. When you want to use it as a support, you can turn it around
and it becomes a “pedestal.”

Thus, modern accounts are now making specific use of
the agency idea by more strongly emphasizing that actions,
resulting from intentions, lead to specific relations between
things, that the sequence of changing relations defines the use
of the “thing,” and that this ways it becomes an object. This is
compatible with Turchin’s claim that for a cognitive agent a
(physical) thing in the world only becomes a meaningful object
by its—planned and predictable—use [18], [19]. This tight link
between actions and objects has been employed by some recent
approaches as useful for the recognition of affordances in an
action context [20], [21]. We will show that the manipulation
ontology presented in this paper fundamentally relies on the
same relational way of thinking. This has two consequences:
1) action components (movement primitives) are defined in
natural way between those time-points where relations be-
tween objects change. This way, movement primitives are
naturally constrained;

2) and, quite unexpectedly we can—for a long time—even
drop the notion of specific objects entirely (above we had
briefly mentioned that our “objects” will be just graph
nodes) and derive the basic ontology merely from this
relational point of view.

Graph nodes have also been used in other works to represent
objects in an action context [22]–[24]. For example Griffith et
al. [22] used scene graphs to analyze comovement relationships
between the robot arm (manipulator) and (manipulated) objects.
The graph nodes represent the tracked features of manipulator
and manipulated objects. The edges are created when manipu-
lator and manipulated object perform the same movements. As
the arm manipulates objects, the graph structure changes with
the movement patterns of the tracked features. Some ideas of
this work will also play a role in our contribution.
Ontologies are heavily used in artificial intelligence research,

computational linguistics, interface design, and many other
fields. In general there are several different types of ontologies.
Those that focus on objects and their relations [25], [26], while
others more strongly emphasize actions [27], [28].
We will not attempt to discuss the wide field of general ob-

ject-ontologies. In the context of this study only those are of in-
terest, which describe objects for manipulations. Such ontolo-
gies have been mostly exploited in the field of designing vir-
tual realities and multimodal interfaces [29],[30], [31], but only
recently object ontologies started to be more strongly used in
robotics [32]–[34].
With respect to an action-focus, a few general ontologies

have been formulated covering the whole body [35], [36], and
some subsymbolic approaches based on observation and clus-
tering also exist [37]. To allow for sequencing, action grammars
have been designed [38]–[40] and for manipulation description,
different grasp-types have been classified [41]–[44]. Recently
an interesting contribution has been made by Pastra and Aloi-
monos [45] who present a serious effort to provide a generative
grammar of actions adhering to a minimalist approach. We cite
from their paper (end of Abstract): Where…

“ action terminals combine hierarchically into tem-
poral sequences of actions of increasing complexity; the
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actions are bound with the involved tools and affected ob-
jects and are governed by certain goals. We [Pastra and
Aloimonos] show, how the tool-role and the affected-ob-
ject role of an entity within an action drives the derivation
of the action syntax in this grammar and controls recursion,
merge andmove, the latter beingmechanisms that manifest
themselves not only in human language, but in human ac-
tion too.”

As shown later, the contribution of our paper will indeed re-
late to these ideas.
Thus, while some attempts to get a better understanding of

the ontology of manipulation actions have been made [32], [33],
[45]–[47], little has been done to try to find the basic structuring
principles by which such an ontology could be bootstrapped.
To define these principles (if existing) would lead to a some-

what better grounded ontology and would be helpful to define:
1) which aspects of a manipulation are important; 2) which tem-
poral phases of the action need to be accurate; and 3) which
relations between the hand and the object are decisive for the
outcome of the whole process.

II. GENERAL PROPERTIES OF MANIPULATIONS

There are many actions that you can perform with your hand
andwewill restrict ourselves to thosemanipulations where hand
and object interact so as to induce a change at the object (or at the
object’s relation to other objects). This, for example, excludes
so-called sensing actions (feeling with your finger whether a
liquid is hot) and some others (like gestures, etc.).
Also, we will only deal with the manipulations performed

with one hand. This is due to the fact that many times bimanual
manipulations can be performed one after the other with one
hand or they fall into the category of support-actions, where the
one hand is used to stabilize an object, while the other hand per-
forms the manipulation. Genuine bimanual manipulations are
much rarer and are often quite complex. The systematic un-
derstanding of single-hand actions presented in the following
might, however, help to also understand those.
Furthermore, we will not talk about complex manipulations,

for example the handling of a power drill, where the tool has
its own actuator, or similar manipulations, but we will include a
discussion about the handling of simple, primary tools. Clearly
the transition from simple to complex tool handling is gradual,
but this distinction will make sense in order to better understand
manipulation ontologies. Early on we define here that primary
tools are those that extend the functionality of the hand (e.g.,
hammer instead of fist) in a quantitative way. The implications
of this will be discussed in detail below.
Also, we will only deal with simple objects, i.e., objects that

do not have separate movable parts and are not deformable.
Manipulating objects with movable parts would require a more
complex ontology, as relations between object parts then can
change (e.g., opening a book or opening a door). In this case we
would find that complete objects are represented by more than
one graph node, where the multiple nodes will have to stand for
the object parts. Now two things can happen: Either the rela-
tion between parts changes (and—as a consequence—the corre-
sponding subgraph will change) or the relation of this subgraph

to other nodes (or subgraphs) can change. This might allow con-
clusions about object-part relations within an action context,
where parts will take the role of objects. The complexity of the
analysis, however, increases and we would, thus, like to leave
this aspect for future investigations.
Another very important notion is that we will initially treat all

manipulation as if one could perform them on any object. In our
diagrams objects will be represented by little colored disks and
we will define the manipulation ontology purely from the view-
point of how an action changes the relations between objects.
Only much later, when talking about our experimental work we
will come back to the issue of objects.

A. Manipulation Types and Goal Categories

To structure the space of single hand manipulations we will
make a few assumptions (rules), which are:
1) before the manipulation the hand is free (not touching any-
thing);

2) at the start of the manipulation the hand touches only one
object and the hand can—during the manipulation—not
purposefully touch another object;

3) the manipulation can take place at the touched object itself
or one other object can be a target, with which the first one
is combined;

4) after the manipulation the hand is free again, this also de-
fines a natural endpoint of the manipulation.

Thus, we have two or three entities, hand plus maximally two
objects, which interact. We can now encode all entities by
graph nodes and the fact that two entities touch each other by
drawing an edge between these nodes. As objects can combine
(or split—e.g., think of a cutting action), during a manipulation,
object nodes can disappear (or new ones appear).
With this we can emulate manipulations in an abstract

way by drawing sequences of such graphs, where between
two graphs the touching patterns between objects (edges) or
the objects themselves (nodes) have changed. These are the
so-called Key Events, hence those moments in time where edges
in the graphs are formed or deleted or new nodes emerge or
disappear. Without even thinking about concrete manipulation
examples, we can now construct all possible graph sequences
without trivial loops or inversions (see Fig. 1) that obey the
four rules from above, using maximally three nodes. While
this looks terrifically abstract, we will soon see that all single
hand manipulations are encoded by six graphs representing
four graph types only, which can also be understood in more
common terms.
This representation corresponds to a relational view onto ma-

nipulations. As shown in an earlier study, those few key events,
where touching or untouching happens, are highly characteristic
for a manipulation action and can be used to categorize manip-
ulations in a model-free way [2], [3]. Hence, absolute space and
time are often meaningless for a manipulation. For many ma-
nipulations it does not matter how fast they are performed or
how much space is in between objects before they recombine
with each other.
Fig. 1, top, shows that manipulations can be performed on one

other object, where the hand interacts with it and then withdraws
from it without involving another object. Stirring in a cup,
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Fig. 1. Manipulation goal categories represented by graph sequences. Manipulation types indicated by the colored side-bars.

punching a ball, or cutting dough with your hand, are such ex-
amples. The first two graph sequences represent these manipu-
lation types called “Hand-Only Actions” (blue side bar). Take,
for example, the first line in this Figure. Here the finger moves
towards a cup, then touches the liquid and performs the stir-
ring until it is finally withdrawn again. Note, while nodes of all
graphs in this paper are being annotated (colored), this is done
only for graphical reasons. Distinctions between graphs arise
entirely from their structural differences (nodes & edges). Node
or edge annotations are not needed!
Evidently, with these graphs we are only representing the

most fundamental relation between objects (“touching”) and do
not yet consider other important information like movement tra-
jectories (stirring means to move your finger or a spoon in a cir-
cular way) or pose (the finger/spoon should be place orthogonal
to the plane given by the cup opening). We will address these
points below.
Many times these Hand-Only Actions are done by first

grasping a primary tool and then performing the manipulation.
The handling of a primary tool, however, does not alter the
outcome of a manipulation in a qualitative way. It only intro-
duces sometimes very strong quantitative changes (see section
on tool handling). Stirring with a spoon is not fundamentally
different from stirring with your finger.
Let us continue analyzing the other manipulations in Fig. 1:

You can interact with one object and thereby create or set free
another (part of an) object, for example ripping a piece off one
thing, or uncovering a hidden object. In the same way you can
also take off a box from a stack thereby freeing the box under-
neath. Fundamentally here you are separating graph nodes from
each other, either by splitting a single node or by breaking an
edge. The middle two graph sequences represent these manipu-
lations, called “Separation Actions” (green side bar).
The opposite is true for the last two graph sequences. Here

nodes are combined or edges formed. For reasons that will be-
come clear later, we will call these actions “Release Determined
Actions” (yellow side bar). The classical pick&place action be-
longs here.

Note, at the level of these graph sequence, separation actions
are the time inverted versions of release determined actions.
This will to some degree change when considering trajectories,
too.
There are many ways to combine these manipulation types

to create complex manipulation sequences. Thus, one should
be careful to only consider manipulation primitives and break
sequences up into the smallest reasonable manipulations types
(that are being sequenced). Note, when performing a grasp (for
example for putting two objects together) the grasp is not a ma-
nipulation-as-such. It is just the generation of a nonpermanent
binding between hand and object: It is the building of a hand-ob-
ject complex and the hand-object complex (as long as the grasp
persists) now takes the role of the acting entity while some other
objects in the world are possible target objects. Thus, we can
remove the grasping problem (which is technologically a very
hard one) from the analysis of our manipulation ontology. Later
we will, however, come back to the grasping problem and to the
often essential role of a grasp for the preparation of the most ap-
propriate way to perform a manipulation (including the problem
of tool-handling).
Furthermore, manipulations are performed to achieve certain

goals. Essentially one finds six categories: Manipulations are
used to Rearrange or to Destroy objects. There are also ma-
nipulations for Breaking and Taking-Down, as well as some
for Hiding or covering objects or for Constructing something.
These categories are therefore called manipulation goal cat-
egories (short: goal categories). Table I summarizes these
considerations.
Triple arrows in Fig. 1 show that some graphs are pair-wise

topologically equivalent. For example, the single blue graph
node in the Breaking action (left side) is equivalent to the blue
and green nodes, which are connected by an edge, in the Take-
Down action below. This is interesting from a cognitive per-
spective: Breaking off a piece of something is very much the
same as taking one thing off another thing. Unity versus du-
ality is many times “in the eyes of the beholder”. Think of two
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TABLE I
MANIPULATION TYPES AND GOAL CATEGORIES

tightly connected red Lego blocks. You can consider them as
one entity and break one block off, or—if your vision is good
enough—you could equally consider them as two blocks and
take one down. Hiding behind these considerations is the fa-
mous “Binding Problem” (see, e.g., [48]). It is often a nontrivial
question whether or not two connected entities represent one or
two objects and the decision about unity versus duality often
rests on tasks and goals rather than on physical facts.
Due to this topological equivalence and to make the now

coming analysis easier we will sometimes neglect the grey
panels, and focus on the other four main graph types. The
examples covered by the grey panels are indeed also executed
less often (by humans) as compared to their equivalent white
partners, which justifies this step, too. The next following
statement makes a somewhat astounding claim:
We believe that the manipulation ontology as well as the re-

sulting data representations can be basically structured by using
only those six (rather four!) fundamental graph sequences from
Fig. 1.
It is not possible to arrive at rigorous proof of this claim, but

we think it will be hard, if not impossible, to find a fundamental
(not composed or chained!) manipulation which cannot be rep-
resented by one of these graphs.
Two questions, however, immediately arise: For which ma-

nipulations will space and time play a more concrete role? This
will be discussed at the end of the paper.
And: Does the representation of “all manipulations” by just

six graphs not just lead to a trivial concatenation, because many,
very different manipulations will now look totally the same?
This problem is largely mitigated as soon as one considers

these graphs in a more realistic context. Fig. 1 represents ob-
ject relations as if the objects were floating in the air. Normally
we deal with objects that are at least connected to “the ground,”
or often also to other objects (e.g., forming a pile, etc.). In real
scenarios, this does indeed introduce enough “second-order” re-
lations, which allow recognizing different manipulations with
quite a high degree of reliability by their graph sequences (see
[2] and [3]). Some examples will be discussed in Section VII,
below. First, here—in the theoretical part of the paper—we will

Fig. 2. Manipulation goal categories represented by graph sequences with
background (black dots). Manipulation types are indicated by blue, green, and
yellow side-bars.

introduce the relation to the ground for some examples (back-
ground, Fig. 2), to show that more structure emerges.2 We only
discuss the four essential graphs. Objects (before lifting) touch
the ground. The first two graph sequences (rearranging and
destroying ) do not show any fundamental differences as
compared to Fig. 1. Also constructing (c) and taking down (t)
remain inverse to each other, but now there is an “air-phase”
where the hand lifts one object off the ground (or off the pile).
We will soon see that the constructing action (and vice versa
for taking-down) this way subdivides into three subcategories,
which are distinguishable by their graphs by either having an
“air-phase” or not.
Including the background is also interesting from a more

subtle, theoretical point of view. If one wants to apply a very
purist attitude, one could now say that building at tower is
really composed of one taking-down action (picking a block
up from the ground) and one putting down action (putting the

2Note, the label “background” is introduced here explicitly for the sake of
theoretical argumentation (to distinguish reasoning with background versus rea-
soning without background), and for making the diagrams for the reader easier
to follow. In actual manipulation recognition procedures, we are treating the
background just as any other object. Hence background does not differ from the
other objects to be manipulated or even the hand. Differences emerge only due
to the different temporal touching patterns of the different objects (including the
background).
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TABLE II
DIFFERENT MANIPULATION INSTANTIATIONS. ABBREVIATIONS: D: DESTROYING, R: REARRANGING (CAN BE DISPLACEMENT, TOO, WHICH IS A

FORM OF REARRANGEMENT), C: CONSTRUCTING, T: TAKING-DOWN, H: HIDING, B: BREAKING. BLUE, GREEN, AND YELLOW MARK THE DIFFERENT
MANIPULATION TYPES. SOME MANIPULATIONS ARE QUITE DIFFICULT AND CAN TAKE DIFFERENT SHAPES. FOR EXAMPLE SCRATCHING AND
SQUASHING/SQUEEZING CAN LEAD TO A NEW GRAPH NODE (FOR EXAMPLE SQUEEZING AN OBJECT TO THE DEGREE THAT IT FALLS APART)

OR LEAD TO A SITUATION WHERE THE EXISTING OBJECT IS JUST DEFORMED (ONE GRAPH NODE REMAINS)

block on another block).3 Strictly this is true, but as the hand
continues to hold the block until final put-down, we would
argue that the two subcomponents do not really exist in their
own right as “manipulations.” Above we had defined the end of
a manipulation as the moment where the hand gets free, which
does only happen at the end of the two subcomponents. Thus,
a further subdivision does not make sense from the viewpoint
of our manipulation ontology.

B. Manipulation Instantiations

As discussed above, we can structure the analysis by the ma-
nipulation types as well as the resulting goal categories and fur-
thermore ask: Which instantiations of Type 1–3 actions exist.
Table II lists many such manipulations and hopefully this list
is fairly complete, but—as it has been compiled just from our
experience—it is open to additions. For Type 1 actions, it is or-
dered from top to bottom by the increasing contact duration of
hand with object. On the right some explanatory notes are given,
sometimes by ways of an example.
We note that in daily life combinations are possible where

the underlying movement trajectories are fluently merged (like
bore-and-push, etc.), but as we want to deal with primitives only

3This is reminiscent to the second law of thermodynamics, where entropy has
to increase somewhere if one wants to decrease it somewhere else.

we would like to keep these manipulations separate knowing,
however, that smooth motion will require trajectory merging in
such cases. Furthermore, we note that the manipulations marked
with large letters are far more common as compared to the other
possible version of the same action. Especially dynamic ver-
sions of these are quite rare (e.g., throwing one ob-
ject against another one is not very often observed if not when
playing Péntaque). Thus these dynamic versions lead over to
sports and games and will not be considered any further for our
manipulation ontology. This is different for the dynamic ver-
sions of rearranging “r” and destroying “d,” here we will find
(see Table IV) that there are important manipulations existing
which are performed rather often in every day life.
An important statement immediately arises. The different ma-

nipulations shown here are fundamentally determined by their
graphs but, especially for manipulation type 1 (hand-only ac-
tions), also by the way the hand/finger(s) touches the object (rel-
ative pose) for some short time and by the movement trajectory
for interacting with the object.
This information has to be added to the goal categories (graph

sequences) introduced above (Fig. 1) and will require further
structural analysis (see below).
It is interesting to note that very many actions fall into goal

categories r or d: Almost everything we do is only done to rear-
range or destroy entities.
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TABLE III
HAND-TOOL ACTIONS ARE RELATED TO HAND-ONLY ACTIONS (TYPE 1) FROM TABLE I.

PUSH IS USUALLY USING A FLAT SURFACE; POKE A POINTY SURFACE OF THE ACTOR

Fig. 3. Manipulation instantiations for the goal category “constructing” (En-
tries 23,24 in Table II.) All these manipulations belong to type 3 (yellow). In
gray there is the dynamic action of throw-on-top related to put-on-top, above.

Fig. 3 shows the graphs for some different cases of con-
structing (entries 23, 24 in Table II). Taking-down is just the
inverse. Only when considering the background these cases are
graph-distinguishable! Otherwise they are all corresponding to
panel “construct” in Fig. 1. Note, for “push-together” all objects
remain constantly on the ground and there is no air-phase. Fur-
thermore, as mentioned above, there are many times kinematic
as well as dynamic versions of similar Type-3 actions existing.
“Throw-on-top” (more common is “throw-in”) is the dynamic

version of “put-on-top.” In this case the hand lets go of object
one before it touches object 2 and a second air-phase emerges.
But these rare actions shall not be considered any further.

C. The Role of Primary Tools

Furthermore, note that for all of the above Type 1 actions
primary tools exist, with which the same action can be per-
formed (in a more efficient way) now using not only the
hand-on-its-own but, instead, a hand-tool complex. There is,
however, no fundamental difference between such hand-only
and the corresponding hand-tool actions. Use your hand to
scoop something up or hold a ladle and use this to scoop; use
your finger to bore a hole or hold or use a drill, and so on.
Thus primary tools offer a change of quantity not quality. The
following table (see Table III) summarizes some early and
more advanced primary tools that have been invented to extend
and improve the hand-only actions from Table II. Note also
Table III is not necessarily complete.

D. More About Grasping and Construction Actions

Grasping has been much linked to cognitive development
(e.g., [1] and [49]). While this is generally agreed in the con-
text of our article grasping needs some different considerations,
too, asking: What does a grasp do?
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TABLE IV
DIFFERENT DEMANDS ON TRAJECTORIES, POSES AND HAND-SHAPES FOR THE ABOVE INTRODUCED MANIPULATION ACTIONS. HAND SHAPES CAN BE FLAT (FLAT
HAND), POINT (FINGER TIP), POINT, NAIL (FINGER NAIL USED WHEN FLICKING), EDGE (EDGE OF HAND OR FINGERS), FIST (FIST), HOOK (HOOK WITH ONE OR
MORE FINGERS), HOLLOW (LIKE A LADLE) OR THE HAND CAN GRASP AN OBJECT (GRASP). ONLY THE MOST GENERIC HAND SHAPES ARE CONSIDERED. HUMAN

CAN SOMETIMES DO THINGS DIFFERENTLY, THOUGH. GRASPING AND RELEASING CAN SOMETIMES BE BALLISTIC/DYNAMIC, BUT THIS IS NORMALLY NOT
EXACTLY ASSOCIATED TO A BUILDING-ACTION AND JUST LISTED FOR THE SAKE OF COMPLETENESS HERE, TOO

Essentially there are only three goals for a grasp (called grasp
goals):
1) a grasp can lead to the replacement of a hand-only action
from Table II with a hand-tool action in Table III above.
(After you have grasped a tool you can use it now);

2) it can be a grasp for performing a separation action
(Type-2) of Table II. (e.g., grasp and rip, or grasp and
turn);

3) it can be a grasp fundamentally performed to be leading to
a release of the grasped object;

The release can take two forms:
a) put-on (guided release, largely kinematic);
b) drop, throw (ballistic release, largely dynamic).

Arguably nothing else can happen with a grasp as far as it con-
cerns one hand manipulations analyzed here!
Grasp goal 1 is fully captured by the specification demands

from Type 1 actions in Table II, above. As discussed above
grasping a primary tool does not alter the corresponding hand-
only actions in a qualitative way.

In grasp goal 2, the grasp takes a preparatory role for the
subsequently happening action, where this action is again taken
from the actions in Table II (mostly Type 2).
In general, however, this shows that grasp goals 1 and 2 are

much related to the execution of hand-only actions or separation
actions. Thus, the performed grasp does not induce anything
conceptually different from what we had discussed in conjunc-
tion with the Type 1 and 2 actions from Table II.
This leaves us with grasp goal 3 and brings us to the last set

of actions (23–26) in Table II. If we have not overlooked some-
thing, this fundamentally shows that a put-on (and its pushing-
variants) are the only manipulation actions that lead to a long
lasting constructive basic-relation between objects. All other
constructive relations are specifications (for example of “pose”)
of the resulting touching relation between the two objects in-
volved, which follows from a put-on action.
Ultimately what counts is that the two objects, with which

the action is concerned, connect in the right way. This, how-
ever, brings us back to the question which spatial and tem-
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Fig. 4. Manipulation Ontology Tree.

poral aspects of a constructive manipulation are required. We
observe that fundamentally the 3D-Pose of the two objects rel-
ative to each other is important, which usually results from a
certain way (trajectory) of combining the one with the other.
But for which moments in time is this information required?
Naively, one would think: When grasping! But this is not true.
The essence of a put-on manipulation results from the action
phase immediately before/at release of the grasped object. The
grasp only influences the outcome of a construction action indi-
rectly or sometimes not at all.
This explains in more detail, why we had called (see Table I)

construction a release-determined action (see Table I). It is fun-
damentally always an ungrasp. A release determined action is
most often a pure ungraspwhich follows a kinematicmovement,
but it can contain dynamic aspects, for example when throwing
one object onto another one or resulting from hand-only-like
component, e.g., when clicking something on or when screwing
something on. The latter cases again lead over to action se-
quences. Hence, we will not dig deeper into this.

III. MANIPULATION ONTOLOGY TREE: A SUMMARY

Fig. 4 summarizes the above discussion on how one can
subdivide the manipulation action space. A structured but very
simple tree with only a few branches at the different levels has
emerged, where the color coding is like in Fig. 1. If desired,
one could consider the right side of this diagram (release
determined actions) as the inverse of the middle (separation
actions).
We found that:
1) There are only three fundamentally different manipulation
types existing (bottom level of tree):
i) hand-only-actions ;
ii) separation actions;

iii) release determined actions (e.g., grasping and putting
down).

2) There are only six manipulation goal categories (next level
of tree) and those are much related to the manipulation
types, where Type-1 manipulations (hand-only actions)
correspond to goal categories rearrange and destroy,
whereas Type-2 (separation actions) corresponds to break
and take-down and Type-3 (release determined actions) to
construct and hide.

3) Manipulation Types and Goal Categories are distinguish-
able by their fundamental graphs. (When considering the
background, more actions can be graph-distinguished, too,
see Fig. 3).

4) Manipulations are determined by continuous and discon-
tinuous phases:
i) discontinuity comes from the temporary formation
or deletion of contacts between objects (or hand and
object);

ii) the final discontinuity, when the hand gets free again,
defines the end of the manipulation;

iii) continuity is due to continuous (or repetitive [e.g.,
chopping]) contact between hand and objects. Here
trajectory and pose information will be needed (dis-
cussed next).

5) Putting together (pushing together, etc.) of two objects are
the only existing long-lasting constructive actions.

6) All other actions are short-lived and used for rearrange-
ment, destruction or to separate entities.

7) There are dynamic as well as kinematic actions possible.
8) Primary tools do not play a special rule.

IV. SPECIAL CASES: ON TOPOLOGICAL EQUIVALENCE

Fig. 5 discusses some special cases when more than two ob-
jects are present in the environment (see case description on
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Fig. 5. Special cases as named on the right side of the graphs. Little sketches
on the right show initial and end configuration of the manipulations. Orange and
light-blue blocks depict topologically identical situations.

the right) to show that on the one hand there is a fundamental
topological equivalence of all these cases to the basic graph se-
quences in Fig. 1, while—on the other hand—the actual graph
sequences remain distinguishable from each other, which is im-
portant from an implementation point of view. Again we em-
phasize that it is not necessary to annotate the nodes. Graph se-
quences are distinguishable just by their node&edge structure.
Panel A repeats the basic graph sequence for “constructing”

from Fig. 2. Colored boxes are used to depict the topologically
equivalent structures. Here we see that panels B and C are equiv-
alent to A by the orange box. Along a given sequence subgraphs
inside the orange box do not change and can be replaced by one
entity (e.g., the black node) from which one immediately sees
that—after such a replacement—panels B and C are identical to
A.
A similar conjecture holds for panel D and A. Here the light

blue boxes depict similarity.
Case E, pouring liquid from one container into another con-

tainer, is intriguing. The outcome of this manipulation is struc-
turally identical to B, the “one-pile” case. The start of the se-
quence (first four graphs, red arrow) is topological equivalent
to the first four panels in A (in fact the first three graphs of D
and E are identical). To understand the remaining graphs (blue
arrow), we need to consider that the coffee-pot is now put back
on the table. This, however, is a “take-down” action. A close
look at the take-down action shown in Fig. 2 reveals that in-
deed the last three panels of E are topologically equivalent to
taking-down. Hence, “pouring” is really not a fundamental ma-
nipulation, but is better understood as a sequence of two.
These results indeed suggest that more complex situations

seem to fall into the basic manipulation goal categories defined
above. At least we have so far not found any exceptions.

V. THE ROLE OF TRAJECTORY, RELATIVE OBJECT POSES, AND
HAND (TOOL)-SHAPES

In this analysis we have several times come across the ques-
tion when and to what degree trajectory and pose information is
required for understanding and executing a manipulation. Note,

Fig. 6. Time bars for trajectory and pose information. Red tinge indicates that
this trajectory contains a dynamic component.

when using the word trajectory, we mean position, velocity and
acceleration, each of which may or may not play a role for a
given manipulation.
Evidently the example in the top row of Fig. 1 cannot be un-

derstood as “stirring” unless we also consider the movement
of the finger (or spoon) in the cup. The graph sequence just
tells us that hand and object have touched and later untouched
each other. These moments provide us with the temporal anchor
points for pose and trajectory analysis.
Thus, to understand the role of trajectories and (relative)

poses we combine the information from Table II with that
presented in Fig. 1 and add time-bars to the Key-Sequences
showing the results in Fig. 6. We use the four main graph
sequences from Fig. 1 and discuss the same examples as above.
We note at first that the different segments (intervals between

Key Events) are not of equal length. For stirring the second seg-
ment will last for quite some time, for punching it will be (in-
finitely) short.
Furthermore we can see that “constructing” and “taking-

down” produce differently structured time-bars as compared to
“stirring/punching” and “cutting/chopping.”
The latter contain long trajectory-critical phases (orange) and

the pose between hand (or tool) and object has to be known at the
moment when it touches the object (indicated by the position of
the light-blue boxes). For a punching movement it is necessary
to hit the target object hard, whereas for a stirring movement the
way of approach does not matter. The same holds true for chop-
ping versus cutting. Thus, the red tinge at the time bars indicates
that some of these manipulations need a dynamic component.
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Fig. 7. (a) Semantic Event Chains belonging to the six graphs from Fig. 1 (b) Representation of the different algorithmic stages.

On the contrary, and as mentioned already above for “con-
structing” the trajectory is critical just before and at release.
Here we will discuss on the commonly performed kinematic
versions of these actions (thus, time bars do not have any red
tinge here). Furthermore, the pose between hand and grasped
object is not very important (if not for preparatory reasons), but
the relative pose between both combined objects needs to be
correct at the moment of release. For taking-down neither trajec-
tory nor poses are important (if just putting the taken-off object
down somehow without considering it further). Note, in those
two cases—constructing and taking-down—we are fundamen-
tally also faced with the grasping problem, which is, however,
not part of the manipulation analysis.
Table IV subsumes the characteristics of pose and trajectory

for the different cases introduced in Table II and in Fig. 6. In
addition one column is added that shows how the hand should
roughly be shaped when performing a given manipulation. Al-
ternatively one could use a tool, which emulates the required
hand-shape.

VI. DATA STRUCTURES FOR MANIPULATION RECOGNITION
AND EXECUTION

As suggested above we can structure a manipulation repre-
sentation by the sequence of key events that describe which ob-
jects touch each other (see Fig. 1) and add to this the additionally
required information on pose and trajectory (see Fig. 6).

A. Introducing Semantic Event Chains

To this end we had in an earlier study introduced the so-called
semantic event chain (SEC) representation [2], [3]. This is a ma-
trix where every column corresponds to a key event and the rows
represent the relations between pairs of graph nodes, which are
the edges of the graph. We have three fundamental relations:

Absent (node does not exist in this key frame), no-
touching between nodes (no edge between nodes), nodes
touch each other (there is an edge between nodes). In the older
study we had also defined an overlapping relation, which is not
relevant here when analyzing 3-D relations.

For the six graphs in Fig. 1 we get the following SECs [see
Fig. 7(a)]. Most consist of four Key Events (columns) and three
rows, due to having three graph nodes. Only the first, simplest
one—rearrange – is different. Simplified time bars from Fig. 6
are shown on the bottom of each SEC. This demonstrates that
the key frames provide us with temporal anchor points for
recording additional information such as trajectory shapes and
poses. This is an important notion, because it allows focusing
additional analysis only onto certain moments in time.
SECs, thus, represent a human-interpretable representation

of a manipulations action [see Fig. 7(b)]. This representation is
very useful because the tabular view created by a SEC makes it
possible to essentially “see how a manipulation basically looks
like.” The naked SECs however, do not contain information
about pose and trajectory and they are not directly machine-
readable. Please see the APPENDIX for the complete represen-
tation, which is then a machine readable format of the SEC in-
cluding pose, trajectory and object information at the temporal
anchor points. GraphML code, mentioned in Fig. 7(b).

B. Manipulation Similarity Measurement

Here we show how one can measure the similarity of se-
mantic event chains and thus recognize different manipulations
from observation up to the goal category (as given in Fig. 4).
To measure similarity two semantic event chains are com-

pared with each other by analyzing their row-column relations
using simple substring search and counting algorithms. We are
searching for correspondences between the two event chains
by first comparing rows. Here we allow shuffling and select
for all rows in the first SEC their most similar counterpart in
Section II. Then the search process counts equal entries in the
corresponding rows. Here we use a standard substring search
which does not rely on the dimensions of the SECs and, thus, al-
lows comparing arbitrarily long manipulation actions by giving
punishments for insertions and deletions. Then in the temporal
domain the sequence of the columns is examined in a similar
way to get the final similarity-measure result. For details see [3].
Note, in all real experiments [2], [3] we are using a similarity
threshold of 65% and consider actions to be the same only if this
threshold is passed.
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Fig. 8. Algorithmic procedure for manipulation learning, recognition, and execution.

Fig. 9. Confusion matrix for action similarity. Similarity is measured in percents (see numbers inside each small square), red color stands for high similarity, blue
color stands for low similarity. Blocks emphasized with black boxes show high similarity within the same action group, blocks emphasized in pink show similarity
between “Put on top” and “Take down” actions.

C. Semantic Event Chains in Real Applications—Towards a
Full Manipulation Description

In our real applications we do not use abstract objects (“col-
ored disks”) for the graph nodes, but image segments obtained
from computer vision methods, where several image segments
usually represent one object. As a consequence we get more

nodes and bigger event chains [see Fig. 10(d)–10(f)]. Here cer-
tain subgraphs represent one object.
As an important finding we have observed that the touching

and untouching behavior of these subgraphs relative to some
other subgraphs is quite invariant against changes within a
subgraph. What does this mean? Essentially this means that
one can replace one suitable object (in a given manipulation
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Fig. 10. Recognition Example. (A)–(C) Frames from example movies with segmentation results and graphs, (D)–(F) SECs belonging to these examples,
(G) confusion matrix from a total of 12 different examples. (H) Image segment groups recognized as performing the same role in the manipulation and association
to the actual images.

context) by any other suitable object (which may produce a
much different image segmentation result and hence a much
different subgraph). Such a replacement does not affect the
essential structure of the SEC, which is given by the relational
changes between the decisive nodes. This observation is ex-
pected from the theory outlined above. Complex event chains
should ultimately be topologically equivalent to simpler ones.
Thus, similar manipulations can be recognized by defining a
metric similarity measure that hinges not on the details, but on
the essential structure of the SEC.
This observation, however, also has a second important and

very useful consequence. By observing the subgraphs, it is pos-
sible to actually recognize the objects that take a specific role
in a manipulation. This addresses a so far missing vital aspect
because it allows for the actual association of objects to a ma-
nipulation in a model-free way.
Fig. 8 describes the complete framework for Object Classi-

fication and Action Description (top part), where the system
observes several movies showing the same manipulation (but
possible with much different objects) and extracts from these
repetitions the archetypical SEC (model-SEC, Step 5B) and
the archetypical subgraphs (Object Classification, Step 5A,
[2], [3]). This step is related to “learning by demonstration”
([50]–[54]), commonly used in robotics, only here we specifi-
cally focus on the extraction and the learning of a model SEC.
To arrive at a model SEC, one has to observe the same manip-

ulation several times. The learning procedure is initiated by as-
signing zero weight values to all rows and to all columns of the
first observation (first observed event chain). When observing
the next manipulation, the event chains are compared by mea-
suring their similarity as described above. For all similar entries,
weights of the corresponding rows and columns are incremented
by a small amount. If the new chain has additional or unobserved
rows or columns the model is extended by these rows/columns,

which start with the initial zero weight value. This is repeated
for all observations. After this, weights are thresholded, deleting
all rows and columns which are subthreshold and returning the
resulting model event chain for this manipulation type.
The model-SEC defines the temporal anchor points (Step

6A), which are those moments in time when a discontinuous
change happens (edge forming or deletion, [dis-] appearance
of nodes). These temporal anchor points are—as discussed
in Fig. 6–also the moments where trajectory information,
including the belonging start and end-points of the movement,
should be stored and also relative poses as required. Trajectory
and pose information render the spatial anchor points (Step 6B)
needed for execution and to obtain them one needs to extract
some information directly from the visual scene (e.g., by means
of trajectory and pose estimation algorithms, not discussed in
this paper).
Execution—for example with a robot—proceeds along the

lower part of the diagram and extracts objects which could po-
tentially be used for a given manipulation. This requires ob-
ject recognition and matching to the stored object list from step
5A, which is another difficult problem and will not be further
discussed here. Action sequencing arises then from the N-T or
T-N transitions in the model-SEC and spatial information is ex-
tracted from the spatial anchor points defined above. This in-
formation must then be submitted to the appropriate low-level
robot execution protocols (controllers, etc.) by which the actual
execution will be driven.
This basic algorithmic procedure described here is quite

simple, complexity arises from some of the required submod-
ules, for example, pose estimation, trajectory learning, object
recognition, and robot control. This is to some degree good
news as it allows improving submodules without affecting the
basic algorithmic procedure. We have recently suggested data
structures for storing object, pose, and trajectory information in
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[55] and defined SEC-based robot control procedures in [56].
Some results, where simple submodules have been used for
trajectory and object handling, are presented in Figs. 10 and 11,
next, in order to raise confidence in the proposed algorithmic
framework.

VII. EXPERIMENTS

A. Analyzing Basic Manipulations

We have analyzed the 26 actions listed in Table II first pro-
viding the graph sequences and then creating a confusion matrix
(Fig. 9). With a few exceptions, it can be seen that within each
of the six manipulation goal categories, actions have high sim-
ilarity with each other but are rather dissimilar from actions of
different goal categories.4 Note, in all real experiments [2], [3]
we are using a similarity threshold of 65% and consider actions
to be the same only if this threshold is passed. Exceptions are ob-
served mainly for the category “Rearrange,” where actions Stir,
Knead, and Lever have less similarity as compared to other ac-
tions in the same category.
Another interesting result seen in this confusion matrix is that

“Take Down” and “Construct” actions have high similarity with
each other (see the pink frames). This is because both action
groups include two half actions: first “Pick up” and then “Put
down”, which can be temporally inverted to obtain the one or
the other action. This has already been discussed in the last para-
graph of Section II-A. The higher scores all across the lower
right part of the matrix point to such temporal inversions.
“Stir”, is also to some degree (but subthreshold) similar to

“TakeDown/Push/Down” as well as “PushOnTop/PutOnTop,”
where the same temporal inversion explains the dual-similarity.
The fact that “Stir” looks a bit like “TakeDown/Push/Down”
is because both actions start with a “stack” of objects
(background cup liquid or background stacked object
stacked object ) where the hand touches the stack (finger in
liquid versus hand grasps stacked object 2) and where the action
end with its release. This leads to 50% similarity of the event
chains. Another exception is the scooping action, which has
low similarities within its own category… This is also expected
as scooping is another action performed on liquid substances
and requires a container for holding it (an additional node). We
also find that the two “Uncover” actions are also related to the
“Destroy” category. Here we realize that uncovering uncovers a
so-far unseen object. This is similar to the destroying action by
which also new objects (rather object parts, hence new nodes)
are being created.
This confusion matrix, thus, confirms that the theoretically

discussed differences between actions can actually be measured
in a generic way. Interestingly, this analysis has also revealed
several unexpected additional cognitive cross-links which are
not immediately obvious. Note, in order to hook up to the
theoretical considerations from above the complete analysis
took place using unlabeled graphs. For all practical purposes it
will, however, certainly make sense to label the “hand” and the

4Here also some of the stranger conjectures find an explanation. For example,
we put “Draw” into the “Destroy” category. This is intriguing but can be easily
explained by realizing that “Draw” generates a new object (a line, by a creative
process) and this way it becomes similar to the results of destroying, where also
new objects are created albeit here by destructive processes.

“background” and calculate similarities on such labeled graphs.
This way several false positive will be eliminated (for example
the Stir-TakeDown/Push/Down similarity will vanish).

B. Human Manipulation Recognition

The following results are recompiled from our older publica-
tions and kept short. The presented experiments are to illustrate
the use of semantic event chains but do not use the ontology
from above directly.
Fig. 10 shows one example each from the following three

manipulation actions: 1) pick and place; 2) pour liquid; and 3)
make sandwich. The first two have been discussed above (see
Fig. 5); the third one is a sequence with two hands, showing
that the framework can also capture bimanual manipulations.
For these different examples four instantiations each have been
recorded (12 movies in total). Movies contained several 100
frames; some are shown together with their image segmenta-
tion (see [57]) and the corresponding graphs in Fig. 10(a)–10(c).
From the main graphs, SECs have been derived [see example
in Fig. 10(d)–10(f)] and their metric similarity has been mea-
sured (see [3] for algorithmic details). The resulting confusion
matrix is shown in panel G and gives percent similarities coded
in color. This demonstrates that the different manipulations are
recognized with quite some reliability when using SECs. The
bottom part of the figure (panel H) shows the results obtained
from object classification, where the unchanging role of a cer-
tain subgraph in a given manipulation is indicative of an object
(in its action context). If desired one can, thus, obtain a list of eli-
gible objects frommany observations of the same manipulation.
As explained above, for executing a manipulation the model

SEC can be used, too, as it provides in the first place the tem-
poral anchor points (see Fig. 8, Step 6A), which define when an
N-T or T-N transition should happen. At these time moments,
descriptors for pose and trajectory are attached (spatial anchors)
as suggested by the time bars in Fig. 7 (see Fig. 8, Step 6B).
Thus, the model-SEC, allows restricts manipulation definition
to just a few anchor points in time and space.

C. Manipulation Execution With a Robot

For demonstrating that the same framework (SECs) can also
be employed for execution we have used a simulation setup
(WebBots with the Katana Robot Arm). A detailed description
of the complete execution example is given in [58], here we only
provide a summary.
In the first stage we have manually programmed the robot

arm to perform 10 different pushing actions (demonstration
phase for learning), where the arm pushes a red box to a green
box. Using the robot already at this stage was for practical
purposes only and demonstration could have also be performed
by a human as the recognition and model-SEC learning steps
(top parts of Fig. 8) do not differ. The blue area in Fig. 11
(top left) shows some frames from one example from such a
demonstration together with image segmentation and graphs. A
magnified view is given at the bottom. After 10 repetitions we
received the model-SEC shown in the yellow area (top right)
together with the confidence values of rows and columns
normalized to one. Entries “A” in the SEC mean that this node
is absent during that particular temporal interval. We note that
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Fig. 11. Execution example. (Blue) Example of a demonstrated pushing action,
(Yellow) Learned model-SEC and definition of motion parameters, (Green) ten
successful executions of pushing with different initial configurations.

“pushing two objects together” corresponds to entry 24 in
Table II. When comparing the SEC for “constructing” in Fig. 7
with the one shown here one can see that they are essentially
identical, where here we have left out the meaningless “al-
ways-N” row which would describe the relation between robot
arm and green object (they never touch). Robot arm and boxes
are the objects that “play a certain role” in the manipulation as
defined by the model-SEC. They are recognized by their color.
The N-T or T-N transitions (nontouching to touching and vice

versa) provide the temporal anchor points (Fig. 8) on which the
trajectory information, required for pushing, is being attached.
Thus, for this case we did indeed perform the required trajec-
tory analysis procedures at the temporal anchor points. Note,
detailed pose information is not needed as the push-together ac-
tion was performed in a simple, pose-independent way. Please
see the APPENDIX, which provides the complete data structure
which captures the SEC and includes the additionally required
pieces of information (e.g., objects, poses and trajectories).
Some spatial anchor points are shown in the Start Configura-

tion Diagram (yellow area) marked O, S, and E. It is important
to note that this process of extracting “execution commands and
parameters for pushing” (Steps 9 and 10 in Fig. 8) is not pro-
prietary; instead it relies on general properties of all building
manipulation actions. By this we can generically define a co-
ordinate origin, which is always the center of the first touched
object (blue dot O in “start configuration” yellow area, bottom)
and the main direction of motion (blue arrow), which is always
from origin to center of the second touched object, as well as
start and endpoints for the different motion segments (S, E, not
all relevant spatial anchor points are shown in this diagram).
Applying these definitions in any new scene with two objects

and a robot arm allows us now to perform the desired push-to-
gether action. Six examples with quite different initial configu-
rations are shown in the green area (bottom of Fig. 11).

VIII. CONCLUSION

Structuring the world for a cognitive agent has proven to be
difficult, especially when trying to do this from the perspective
of objects. This is due to the fact that the same physical thing can
take different roles depending on the actions performed with it.
Hence different “objects” emerge from the same thing [6], [18],
[19]. It seems, thus, more promising trying to provide struc-
ture to an agent by considering actions (here manipulations) in-
stead of things and objects. As shown in this study (by ways
of 447 small, colored disks), the manipulation space is much
more restricted and a rather simple tree-like structure emerges
for most if not all possible manipulations. Thus, a somehow re-
markable fact of the introduced ontology is its “simplicity.” Less
than 30 basic actions with three associated manipulation types
and six goal categories have been found. This fact gives quite
some hope that the actual problem of establishing systems real-
izing tool-use behaviors on robots can be based on a rather con-
strained number of basic skills, where complexity arises only at
the control-level. Our claim of simplicity also gets support from
at least three additional sources.
• When we compare the dimensions of the space of percep-
tive information with the dimensions of the actuator space
we realize that the action space is of much lower dimen-
sion (26 DoF for one hand and 7 DoF for one human arm,
i.e., 66 DoF for both hands and arms) versus a dimen-
sion of to for sensorial information (assuming a

image stream a space of dimension
is spanned not counting audio, tactile or propriocep-

tive information).
• Looking at a quantification of verbs and nouns it becomes
obvious that there are much fewer verbs (in particular
tool-use related verbs) than nouns. The group of Michael
Beetz has performed an interesting analysis for the
problem of cooking and they find that only a very limited
number of relevant action (relevant verbs) exist for a given
scenario (they report about 15 verbs, Nyga and Beetz,
personal communication). Note also that Biederman [59]
suggested that every person is familiar with around 30 000
objects compared with a rather restricted set of basic skills.

• Looking at the development of human tool use abilities [1]
there is evidence that—starting with a small set of around
five tool-use related repetitive action patterns, which
are probably to a large degree innately coded, tool use
competences maturate in the developmental process by
interacting with objects in the world. This developmental
process is guided by a number of basic mechanisms such
as repetition, variation, and selection and in our context
most importantly composition, i.e., the combination of
lower level skills to higher level skills.

Furthermore, as discussed above, the ontology introduced in
this paper represents an abstraction of actions and the establish-
ment of these actions in real systems requires to add more in-
formation such as trajectory, pose, etc. but also—and this has
not yet been mentioned—ultimately one needs to include other
perceptive information (e.g., haptic or proprioceptive signals)
to find the optimal trajectory as well as the best contact with the
object.
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Fig. 12. GraphML code for Key Event 2 in the “rearrange” Manipulation (first one in Fig. 1, 6). The GraphML code contains node and edge descriptors which
define the required poses and trajectories for the different objects. Note, we use a human readable form here for encoding subentities. For example the cup-
description is called “cup”. This is not necessarily the case in an actual implementation. Some details, like the actual start positions, x,y,z and the pose-matrix are
also left unspecified.

Finally, we have shown that this manipulation ontology finds
its use for robotics by ways of the semantic event chains which
provide temporal anchor points also for the attachment of pose,
trajectory and object information. This allows—at least in prin-
ciple—now a fairly complete encoding of a manipulation. Many
steps will have to be performed to make this framework rock-
solid and robust against noise (in the sensor as well as motor
domain) and other contingencies. This none withstanding, we
think the manipulation ontology presented here together with
some useful data structures may indeed help to better under-
stand and execute manipulations in the future.

APPENDIX
GRAPHML CODE

SECs are human interpretable but not directly machine
readable and they do not encode object, trajectory and pose
information. To address these aspects, we choose a different,
second form of representation based on GraphML code [60].
The basis of this is the SEC, where every key event is encoded
in one GraphML data sheet. This representation is, thus, quite
detailed and difficult to read for a human. On the other hand,
the GraphML code is machine compatible and can be used
for automatic, computer-based manipulation recognition as
well as execution. Essentially it is identical to a SEC, just
using a different type of encoding, but now it is possible to
supplement this GraphML code with object, pose and trajectory
information. Fig. 12 shows one example of the GraphML code
for the second Key Event (the event marked with “T,” when
both touch) of the “Rearrange”-Graph in Fig. 7, hence that Key
Event where the two nodes touch (spoon enters cup and begins
stirring). A similar GraphML entry must be created for every
Key Event in a Graph Sequence (hence in a SEC). As the figure
demonstrates, nodes and edges are being supplemented with
trajectory and pose information.
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